Inhibition of Barley Acetolactate Synthase by Triazolopyrimidine Derivative

트리아졸로피리미딘계 유도체에 의한 보리 Acetolactate Synthase의 저해

  • Kim, Sung Ho (Department of Biochemistry, Chungbuk National University) ;
  • NamGoong, Sung Keon (Department of Chemistry, Seoul Womans University) ;
  • Shin, Jung Hyu (Department of Chemistry, Seoul National University) ;
  • Chang, Soo Ik (Department of Biochemistry, Chungbuk National University) ;
  • Choi, Jung Do (Department of Biochemistry, Chungbuk National University)
  • Published : 19990800

Abstract

Acetolactate synthase (ALS) catalyzes the first common reaction in the biosynthesis of branched-chain amino acids, valine, leucine, and isoleucine. ALS is the common target of several classes of structurally diverse herbicides, the triazolopyrimidines, the imidazolinones, the sulfonylureas, and pyrimidyl-oxy-benzoates. We examined ihibitory activities of newly synthesized triazolopyrimidine sulfonamide derivatives using partially purified ALS from barley. $IC_{50}$ values for the active derivatives are 0.5nM∼8$\mu$M. Among them TP1 and TP2 are the most potent ALS inhibitors with $IC_{50}$ values of 0.5nM and 1.6nM, respectively. These inhibitors are more potent in the inhibition of barley ALS than commercial herbicides, Metosulam ($IC_{50}$;3.6 nM), Flumetsulam ($IC_{50}$;126 nM), and Cadre ($IC_{50};4 {\mu}M$). The progress curves for inhibition of ALS by TP2 showed that the amount of inhibition increases with time. The inhibition of ALS by TP2 was mixed-type inhibition with respect to pyruvate. Dual inhibition analyses of TP2 versus an imidazolinone, Cadre, and Leu showed parallel and intercepting kinetic pattern, respectively. The results suggest that TP2 binds to ALS competively with Cadre but not with Leu. Chemical modification of cysteinly residues in ALS decreased the sensitivity of ALS to Leu, while the modification did not affect the sensitivity of ALS to TP2 and Cadre.

Acetolactate synthase (ALS)는 가지를 가진 필수아미노산 Val, Leu, Ile의 생합성 과정에서 공통적으로 작용하는 효소이다. ALS는 서로 구조적 유사성이 없는triazolopyrimidine, imidazolinone,sulfonylurea, 그리고 pyrimidyl-oxy-benzoate 제초제들의 공통적인 작용 표적이다. 보리로부터 부분 정제한 ALS를 이용하여 새로이 합성한 triazolopyrimidine sulfonamide 유도체들의 저해 활성을 측정하였다. 활성을 가진 유도체들의 $IC_{50}$ 값은 0.5nM∼8${\mu}M$ 범위였으며, 그 중에서 탁월한 저해 활성을 갖는 것은 TP1과TP2 유도체로 $IC_{50}$ 값은 각각 0.5 nM과 1.6 nM이였다. 이 저해제들은 기존의 상품화된 제초제인 Metosulam ($IC_{50}$;3.6 nM), Flumetsulam ($IC_{50}$;126 nM), 그리고 Cadre ($IC_{50};4 {\mu}M$)에 비해 보리 ALS에 대한 저해 활성이 보다 우수하였다. 보리 ALS에 대한 TP2의 저해 활성은 반응시간이 증가함에 따라 증가하였고, 혼합형 저해 유형을 보였다. TP2와 imidazolinone 계열의 제초제인 Cadre, 그리고 되먹임(feedback) 저해제인 Leu에 대한 이중저해 (dual inhibition) 실험 결과 TP2와 Cadre의 경우는 평행한 반응속도론적 형태가 그러나 TP2와 Leu의 경우는 한 점에서 만나는 반응속도론적 헝태가 얻어졌다. 이는 TP2와 Cadre의 결합 부위가 최소한 부분적으로 중복되고 있음을 시사한다. Cys 잔기에 대한 화학적 변형은 TP2와 Cadre의 결합에는 영향을 미치지 않으나, Leu의 결합에는 영향을 미쳤다.

Keywords

References

  1. J. Bacteriol v.137 Grimminger, H.;Umbarger, H. E.
  2. Eur. J. Biochem v.185 Poulsen, C.;Stougaard, P.
  3. Physiol. Plant v.98 Southad, M. D.;Copeland, L.
  4. J. Bacteriol v.157 Eoyang, L.;Silverman, P. M.
  5. Biochemistry v.24 Schloss, J. V.;Van Dyk, D. E.;Vasta, J. F.;Kuntny, R. M.
  6. Biochemistry v.35 Vyazmensky, M.;Sella, C.;Barak, Z.;Chipman, D. M.
  7. Naturforsch v.43C Durner, J.;Boger, P. Z.
  8. J. Biochem. Mol. Biol. (formerly Korean Biochem. J.) v.30 Chong, C. K.;Chang, S. I.;Choi, J. D.
  9. Plant Physiol v.83 Muhitch, M. J.;Shaner, D. L.;Stidham, M. A.
  10. Biochem. Biophys. Res. Commun. v.17 Stomer, F. C.;Umbarger, H. E.
  11. FEBS v.258 Singh, B. K.;Schmitt, G. K.
  12. British Crop Protection Council v.42 Subramanian, M. V.;Loney, V.
  13. Plant Physiol v.76 Shaner, D. L.;Anderson, P. C.;Stidham, M. A.
  14. Science v.224 Chaleff, R. S.;Maurais, C. T.
  15. Plant Physiol v.75 Ray, T. B.
  16. Eur. Pat. Appl. v.223 Nezu, Y.;Ojima, F.;Miyazawa, T.
  17. Natrue v.331 Schloss, J. V.;Ciskanik, L. M.;Vandyk, D. E.
  18. Chemistry of Plant Protection: Herbicides Inhibiting Branched Amino Acid Biosynthesis-Recent Developments Schloss, J. V.;Stetter, J.(Ed.)
  19. Synthesis and Chemistry of Agrochemicals Ⅲ Kleschick, W. A.;Costales, M. J.;Baker, D. R.(ed.);Fenyes, J. G.(ed.);Steffens, J. J.(ed.)
  20. J. Biol. Chem. v.101 Westerfeld, W. W.
  21. J. Biol. Chem. v.259 Larossa, R. A.;Shloss, J. V.
  22. Plant Physiol v.96 Subarmanian, M. V.;Loney-Gallant, V.;Dais, J. M.;Mireless, L. C.
  23. Herbicides v.3 Beyer Jr, E. M.;Duffy, M. J.;Hay, J. V.;Schlueter, D. D.;Kearney, P. C.(ed.);Kaufman, D. D.(ed.)
  24. J. Biochem. Mol. Biol. (formerly Korean Biochem. J.) v.25 Ahn, T. W.;Kim, D. W.;Choi, J. D.
  25. J. Biochem. Mol. Biol. (formerly Korean Biochem. J.) v.28 Shin, H. O.;Kim, D. W.;Chang, S. I.;Choi, J. D.
  26. J. Biochem. Mol. Biol. (formerly Korean. Biochem. J.) v.26 Choi, J. D.;Moon, Y.;Chang, S. I.;Chae, J.K.;Shin, J. H.
  27. Plant Physiol v.95 Durner, J.;Gailus, V.;Boger, P.
  28. Plant Physiol v.93 Hall, L. M.;Devine, M. D.
  29. Plant Physiol v.191 Landstein, D.;Arad, S.;Barak, Z.;Chipman, D. M.