• Title/Summary/Keyword: Triazole fungicide

Search Result 19, Processing Time 0.026 seconds

Evaluation of Toxicity of 23 Pesticides against Harmonia axyridis (Coleoptera: Coccinellidae) Eggs and Adults: Effect on Esterase Activity, Hatchability, and Fecundity (포식성 무당벌레(Harmonia axyridis) 난(卵)의 일부살충제와 살균제에 대한 esterase 활성 및 산란율, 부화율 조사)

  • Cho, Sae-Youll;Park, Young-Man;Park, Yong-Chul
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.2
    • /
    • pp.117-124
    • /
    • 2007
  • Esterase activity was observed after pesticides treatment in eggs of H. axyridis to select low toxicity pesticide. Egg esterases of H. axyridis were examined using an esterase substrate(${\alpha}$-naphthyl acetate). Three esterase isozymes were detected and the activities were inhibited by organophosphorus insecticide (Chlorpyrifos and Phenthoate), organochlorine insecticide(Methidation), triazole fungicide(Hexaconazole and Triflumizole), and pyrimidine fungicide(Nuarlmol). Fecundity and hatchability in adults and eggs of H. axyridis were examined on selected pesticides. Fecundity and hatchability were significantly reduced from H. axyridis adults and eggs treated with the pesticides and the fungicides showed strong inhibition of esterase isozymes activities. However, we also observed the pesticides and the fungicides showed low or non-inhibition of esterase isozymes activities affected on fecundity and hatchability in adults and eggs.

Dissipation Patterns of Triazole Fungicides Estimated from Kinetic Models in Apple (Triazole계 살균제의 사과 중 잔류양상의 Kinetic Model 적용)

  • Kim, Ji-Hwan;Hwang, Jeong-In;Jeon, Young-Hwan;Kim, Hyo-Young;Ahn, Ji-Woon;Kim, Jang-Eok
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.4
    • /
    • pp.235-239
    • /
    • 2012
  • While cultivating crops, it is important to predict the biological half-lives of applied pesticides to ensure the safety of agricultural products. Dissipation patterns of the triazole fungicides, such as diniconazole and metconazole, during the cultivation of apple were established by utilizing the dissipation curve. As well as, the biological half-lives of the pesticides in apples were calculated using the residue amounts of them. The apples were harvested from 0 to 14 days after spraying diniconazole (WP) and metconazole (SC) at a recommended and three times of the recommended dose. Initial concentrations of diniconazole in apple were 0.09 and 0.15 mg/kg at a recommended and three times of the recommended dose, respectively, which were below MRL 1.0 mg/kg established by KFDA. The equations of biological half-life were $C_t=0.0811e^{-0.179x}$(half life: 3.9 days) and $C_t=0.1451e^{-0.148x}$ (half life: 4.7 days), respectively. In case of metconazole, initial concentrations in apple were 0.10 and 0.25 mg/kg, below MRL 1.0mg/kg, and biological half-life equations were $C_t=0.0857e^{-0.055x}$ (half life: 12.6 days) and $C_t=0.2304e^{-0.052x}$ (half life: 13.3 days), respectively. Therefore, when triazole fungicides were applied during the cultivation of apple, the biological half-life need to be calculated with the optimal equation model.

Effects of Different Application Approaches with Diniconazole on the Inhibition of Stem Elongation and the Stimulation of Root Development of Cylindrical Paper Pot Seedling (생장조절체 처리가 원통형 종이포트묘의 도장 억제 및 근권부 발달에 미치는 영향)

  • Jang, Dong Cheol;Xu, Chan;Kim, Si Hong;Kim, Dae Hoon;Kim, Jae Kyung;Heo, Jae Yun;Vu, Ngoc Thang;Choi, Ki Young;Kim, Il Seop
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.365-372
    • /
    • 2020
  • This study was conducted to compare the effects of foliar spray and sub-irrigation of the triazole fungicide diniconazole on the regulation of stem elongation and to investigate the stimulation of root system development during the seedling stage. Comparing the two application approaches, there were significant differences in the leaf area, leaf area ratio (LAR), plant height, compactness, fresh shoot and root production, relative growth rate (RGR), and root to shoot ratio (R/S). At the same application concentration, the sub-irrigation showed a better retarding effect on growth than the foliar spray, because the PGR activity of diniconazole in root absorption was higher than that in shoot absorption. For reaching a target of 20% to 30% inhibition rate of stem length, foliar application concentration of diniconazole exceeded 10, however, only approximately 1 was required in the sub-irrigation application. The root system of tomato seedlings responded strongly to diniconazole application. Total root length, root volume, root average diameter, and the number of root tips increased when diniconazole was sub-irrigation application at 1. A reduction in fine roots (diameter range of 0 to 0.3 mm) and an increase in the roots with a diameter range of 0.3 to 0.6 mm was observed, and this may contribute to the increase in average diameter. The increase in root average diameter may be positive because root penetration increases with root diameter. Our results suggested that sub-irrigation maximized the PGR activity of diniconazole to enhance the retarding effect. And it also possible to enhance the tomato seedling root system by diniconazole stimulating with a lower concentration.

Investigation of Fungicides Inhibitory Effect of on Summer Patch Disease, Caused by Magnaporthiopsis poae, in Kentucky bluegrass (여름잎마름병(Summer patch) 병원균에 대한 살균제의 억제효과 조사)

  • Lee, Jung Han;Shim, Gyu Yul;Kim, Jeong Ho;Jeon, Chang Wook;Kwak, Youn-Sig
    • Weed & Turfgrass Science
    • /
    • v.6 no.2
    • /
    • pp.151-156
    • /
    • 2017
  • Summer patch is the most serious disease at turfgrass field or golf course established with Kentucky bluegrass during high temperature season in Korea. Nevertheless, chemicals for the summer patch control are not yet registered in Korea. We isolated the pathogens from the turfgrass showing typical summer patch symptoms and identified as Magnaporthiopsis poae by using the internal transcribed spacer ITS1 and ITS4 sequences of rDNA. The inhibition rates of the pathogen were investigated for 10 fungicides. As results, the pathogen growth was suppressed when chemicals concentration increased and negatively correlated with incubation period with the chemicals. In triazole group, all chemicals (metconazole, myclobutanil, propiconazole and tebuconazole) treated showed the inhibition rates by 100%. Thiophanate-methyl showed the next highest inhibition effect against a summer patch pathogen. In strobilurin group, pyraclostrobin was the highest suppression effect compared with azoxystrobin and trifloxystrobin. Inhibition effect of fludioxonil and fluxapyroxad on pathogen was similar to the trifloxystrobin. Based on the results, triazole and carboxamide groups are strongly recommended due to the highest inhibition effect on the summer patch pathogen, Magnaporthiopsis poae.

Toxic Effects of Triazole Fungicide Difenoconazole on the Early Development of African Clawed Frog, Xenopus laevis (Triazole계 농약 Difenoconazole이 Xenopus laevis의 초기 배 발생에 미치는 독성 영향)

  • Lee, You-Hwa;Yoon, Chun-Sik;Lee, Mi-Ju;Hwang, Yong-Gi;Cheong, Seon-Woo
    • Journal of Environmental Science International
    • /
    • v.20 no.10
    • /
    • pp.1221-1232
    • /
    • 2011
  • We investigated the toxic effects of difenoconazole on the development in the African clawed frog, Xenopus laevis. To test the toxic effects, frog embryo teratogenesis assays using Xenopus were performed. Embryos were exposed to various concentrations of difenoconazole (0-30 ${\mu}M$). $LC_{100}$ for difenoconazole was 30 ${\mu}M$, and the $LC_{50}$ determined by probit analysis was 27.19 ${\mu}M$. Exposure to difenoconazole concentrations ${\geq}$5 ${\mu}M$ resulted in 10 different types of severe external malformation. Histological examinations revealed dysplasia of the eye, heart, liver, somatic muscle, and swelling of the pronephric ducts. The tissue-specific toxic effects were investigated with an animal cap assay. Blood cells were normally induced at a high frequency by mSCF and activin A. However, the induction of blood cells was strongly inhibited by the addition of difenoconazole. Electron micrographs of tested embryos showed the degeneration of somatic muscle and the shrinkage of microvilli on pronephric duct. The gene expression of cultivated animal cap explants was investigated by reverse transcriptase-polymerase chain reaction (RT-PCR). It revealed that the expression of the blood-specific marker(${\beta}$-globin II) and muscle-specific marker (XMA) were more strongly inhibited than the neural-specific marker(XEn2) by the addition of difenoconazole.

Effects of Hexaconazole on Growth and Antioxidant Potential of Cucumber Seedlings under UV-B Radiation

  • Kim, Tae-Yun;Hong, Jung-Hee
    • Journal of Environmental Science International
    • /
    • v.21 no.12
    • /
    • pp.1435-1447
    • /
    • 2012
  • The present study was conducted to determine the effect of hexaconazole (HEX), a triazole fungicide, on the growth, yield, photosynthetic response and antioxidant potential in cucumber (Cucumis sativus L.) plants subjected to UV-B stress. UV-B radiation and HEX were applied separately or in combination to cucumber seedlings. The growth parameters were significantly reduced under UV-B treatment, however, this growth inhibition was less in HEX treated plants. HEX caused noticeable changes in plant morphology such as reduced shoot length and leaf area, and increased leaf thickness. HEX was quite persistent in inhibiting shoot growth by causing a reduction in shoot fresh and dry weight. HEX noticeably recovered the UV-B induced inhibition of biomass production. Significant accumutation in anthocyanin and flavonoid pigments in the leaves occurred as a result of HEX or UV-B treatments. HEX permitted the survival of more green leaf tissue preventing chlorophyll content reduction and higher quantum yield for photosystemII under UV-B exposure. HEX treatment induced a transient rise in ABA levels in the leaves, and combined application of HEX and UV-B showed a significant enhancement of ABA content which activates $H_2O_2$ generation. UV-B exposure induced accumulation of $H_2O_2$ in the leaves, while HEX prevented UV-B induced increase in $H_2O_2$, indicating that HEX serves as an antioxidant agent able to scavenge $H_2O$ to protect cells from oxidative damage. An increase in the ascorbic acid was observed in the HEX treated cucumber leaves affecting many enzyme activities by removing $H_2O_2$ during photosynthetic processes. The activities of antioxidant enzymes including catalase(CAT), ascorbate peroxidase(APX), superoxide dismutase(SOD) and peroxidase(POD) in the leaves in the presence of HEX under UV-B stress were higher than those under UV-B stress alone. These findings suggest that HEX may participate in the enhanced tolerance to oxidative stress. From these results it can be concluded that HEX moderately ameliolate the effect of UV-B stress in cucumber by improving the components of antioxidant defense system.

Degradation Ability of Fungicide Myclobutanil by Several Soil Bacteria (수종(數種) 토양세균(土壤細菌)에 의한 살균제(殺菌劑) Myclobutanil의 분해력(分解力))

  • Han, Seong-Soo;Park, Pill-Jae;Jeong, Jae-Hun;Rim, Yo-Sup
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.1
    • /
    • pp.25-36
    • /
    • 1996
  • This study was carried out to isolate some bacterial strains which had potentiality of good degrader of fungicides from herbicide free soil and to clarify degradation of a fungicide mycrobutanyl[2-p-chlorophenyl-2-(1H-1,2,4-triazole-1-ylmethyl)-hexanenitrile]. Ten strains of the gram-positive and the gram-negative bacteria were isolated and identified. Most of them vigorously proliferated at 55ppm of mycrobutanil, but the stains were not grown when more than 70ppm of this fungicide were treated Staphylococcus spp. I, Actinobacillus spp. III, and another I of the isolated bacteria degraded more than 35% of the treated mycrobutanil. These three strains could utilize mycrobutanil as nitrogen and carbon sources. Mycrobutanil was rapidly decomposed by these strains when applied once or three times. Tested bacteria gradually increased in growth when mycrobutanil was applied repeatedly. Degradation of mycrobutanil and growth of these bacteria were greater in pH 5.5, and they were high in the order of $28^{\circ}C$ > $18^{\circ}C$ > $38^{\circ}C$.

  • PDF

Change in the Sensitivity to Propiconazole of Fusarium graminearum Species Complex Causing Head Blight of Barley and Wheat in Jeolla Province (전남북 지역 맥류 붉은곰팡이병균의 Propiconazole 약제에 대한 감수성 변화)

  • Jiseon Baek;Ju-Young Nah;Mi-Jeong Lee;Su-Bin Lim;Jung-Hye Choi;Ja Yeong Jang;Theresa Lee;Hyo-Won Choi;Jeomsoon Kim
    • The Korean Journal of Mycology
    • /
    • v.50 no.4
    • /
    • pp.281-289
    • /
    • 2022
  • Fusarium head blight is an important disease of small grains. It is mainly caused by members of the Fusarium graminearum species complex (FGSC). Barley and wheat growers spray fungicides, especially demethylation-inhibitor fungicides, to suppress the disease. The objective of this study was to examine the changes in the sensitivity of the FGSC population to the triazole fungicide, propiconazole. A total of 124 and 350 isolates of FGSC were obtained from barley and wheat in Jeolla Province during 2010-2016 and 2020-2021, respectively. The species identity and trichothecene chemotypes of the FGSC isolates were determined based on polymerase chain reaction assays targeting translation elongation factor 1-alpha and TRI12 genes, respectively. Sensitivity to propiconazole was determined based on the effective concentration that reduced 50% of the mycelial growth (EC50) using the agar dilution method. Of all isolates, F. asiaticum with the nivalenol chemotype was the most common (83.9% in 2010-2016 and 96.0% in 2020-2021), followed by F. asiaticum with the 3-acetyl deoxynivalenol chemotype (12.1% in 2010-2016 and 2.9% in 2020-2021). The EC50 values of the isolates collected in 2010-2016 and 2020-2021 ranged from 0.0180 to 11.0166 ㎍/mL and 1.3104 to 17.9587 ㎍/mL, respectively. The mean EC50 value of the isolates increased from 3.8648 ㎍/mL in 2010-2016 to 5.9635 ㎍/mL in 2020-2021. The baseline resistance to propiconazole was determined to be 7 ㎍/mL, based on the EC50 value of isolates collected in 2010-2016, and the ratio of resistant isolates increased from 9.7% in 2010-2016 to 28.6% in 2020-2021.

Determination and Validation of an Analytical Method for Dichlobentiazox in Agricultural Products with LC-MS/MS (LC-MS/MS를 이용한 농산물 중 Dichlobentiazox 시험법 개발 및 검증)

  • Gu, Sun Young;Lee, Han Sol;Park, Ji-Su;Lee, Su Jung;Shin, Hye-Sun;Kang, Sung Eun;Chung, Yun Mi;Choi, Ha Na;Yoon, Sang Soon;Jung, Young-Hyun;Yoon, Hae Jung
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.2
    • /
    • pp.108-117
    • /
    • 2021
  • BACKGROUND: Dichlobentiazox is a newly registered pesticide in Korea as a triazole fungicide and requires establishment of an official analysis method for the safety management. Therefore, the aim of this study was to determine the residual analysis method of dichlobentiazox for the five representative agricultural products. METHODS AND RESULTS: Three QuEChERS methods were applied to establish the extraction method, and the EN method was finally selected through the recovery test. In addition, various adsorbent agents were applied to establish the clean-up method. As a result, it was found that the recovery of the tested pesticide was reduced when using the d-SPE method with PSA and GCB, but C18 showed an excellent recovery. Therefore this method was established as the final analysis method. For the analysis, LC-MS/MS was used with consideration of the selectivity and sensitivity of the target pesticide and was operated in MRM mode. The results of the recovery test using the established analysis method and inter laboratory validation showed a valid range of 70-120%, with standard deviation and coefficient of variation of less than 3.0% and 11.6%, respectively. CONCLUSION: Dichlobentiazox could be analyzed with a modified QuEChERS method, and the method determined would be widely available to ensure the safety of residual pesticides in Korea.