DOI QR코드

DOI QR Code

Toxic Effects of Triazole Fungicide Difenoconazole on the Early Development of African Clawed Frog, Xenopus laevis

Triazole계 농약 Difenoconazole이 Xenopus laevis의 초기 배 발생에 미치는 독성 영향

  • Lee, You-Hwa (Department of Biology, Changwon National University) ;
  • Yoon, Chun-Sik (Department of Biology, Changwon National University) ;
  • Lee, Mi-Ju (Department of Biology, Changwon National University) ;
  • Hwang, Yong-Gi (Department of Biology, Changwon National University) ;
  • Cheong, Seon-Woo (Department of Biology, Changwon National University)
  • Received : 2011.04.07
  • Accepted : 2011.08.17
  • Published : 2011.10.31

Abstract

We investigated the toxic effects of difenoconazole on the development in the African clawed frog, Xenopus laevis. To test the toxic effects, frog embryo teratogenesis assays using Xenopus were performed. Embryos were exposed to various concentrations of difenoconazole (0-30 ${\mu}M$). $LC_{100}$ for difenoconazole was 30 ${\mu}M$, and the $LC_{50}$ determined by probit analysis was 27.19 ${\mu}M$. Exposure to difenoconazole concentrations ${\geq}$5 ${\mu}M$ resulted in 10 different types of severe external malformation. Histological examinations revealed dysplasia of the eye, heart, liver, somatic muscle, and swelling of the pronephric ducts. The tissue-specific toxic effects were investigated with an animal cap assay. Blood cells were normally induced at a high frequency by mSCF and activin A. However, the induction of blood cells was strongly inhibited by the addition of difenoconazole. Electron micrographs of tested embryos showed the degeneration of somatic muscle and the shrinkage of microvilli on pronephric duct. The gene expression of cultivated animal cap explants was investigated by reverse transcriptase-polymerase chain reaction (RT-PCR). It revealed that the expression of the blood-specific marker(${\beta}$-globin II) and muscle-specific marker (XMA) were more strongly inhibited than the neural-specific marker(XEn2) by the addition of difenoconazole.

Keywords

References

  1. Ariizumi, T., Asashima, M., 1994, In vitro control of the embryonic form of Xenopus laevis by activin A: Time and dose-dependent inducing properties of activin-treated ectoderm, Dev. Growth Differ, 36, 499-507. https://doi.org/10.1111/j.1440-169X.1994.00499.x
  2. Ariizumi, T., Sawamura, K., Uchiyama, H., Asashima, M., 1991, Dose and time-dependent mesoderm induction and outgrowth formation by activin A in Xenopus laevis, Int. J. Dev. Biol., 35(4), 407-414.
  3. ASTM(American Society for Testing and Materials), 1998, Standard guide for conducting the Frog Embryo Teratopenesis Assay-Xenopus (FETAX), Philadelphia, ASTM, 1439-1498.
  4. Bridges, C. M., 2000, Long-term effects of pesticide exposure at various life stages of the southern leopard Frog(Rana sphenocephala), Arch. Environ. contam. Toxicol., 39(1), 90-96.
  5. Colombo, A., Orsi, F., Bonfanti, P., 2005, Exposure to the organophosphorus pesticide chlorpyrifos inhibits acetylcholin-esterase activity and affects muscular integrity in Xenopus laevis larvae, Chemosphere, 61(11), 1665-1671. https://doi.org/10.1016/j.chemosphere.2005.04.005
  6. Elliott-Feeley, E., Armstrong, J. B., 1981-1982, Effects of fenitrothion and carbaryl on Xenopus laevis development, Toxicology, 22(4), 319-335.
  7. Hauptman, O., Albert, D. M., Plowman, M. C., Hopfer, S. M., Sunderman, F. W. Jr., 1993, Ocular malformation of Xenopus laevis exposed to Nikel during embryogenesis, Ann. Clin. Lab. Sci., 23(6), 397-406.
  8. Hemmati-Brivanlou, A., Melton, D. A., 1994, Inhibition of activin receptor signaling promoted neurulization in Xenopus, Cell, 77(2), 273-281. https://doi.org/10.1016/0092-8674(94)90319-0
  9. Miyanaga, Y., Shiurba, R., Asashima, M., 1999, Blood cell induction in Xenopus animal cap explants, effects of fibroblast growth factor, bone morphogenetic proteins, and activin, Dev. Genes Evol., 209(2), 69-76. https://doi.org/10.1007/s004270050229
  10. Neildez-Nguyen, T. M., Wajcman, H., Marden, M. C., Bensidhoum, M., Moncollin, V., Giarratana, M. C., Kobari, L., Thierry, D., Douay, L., 2002, Human erythroid cells produced ex vivo at large scale differentiate into red blood cells in vivo. Nat. Biotechnol., 20(5), 467-72. https://doi.org/10.1038/nbt0502-467
  11. Nieuwkoop, P. D., Faber, J., 1956, Normal table of Xenopus laevis (Daudin), North-Holland Publishing, Amsterdam, 243.
  12. Orkin, S. H., Harosi, F. L., Leder, P., 1975, Differentiation of erythroleukemic cells and their somatic hybrids, Proc. Nati. Acad. Sci. USA, 72(1), 98-102. https://doi.org/10.1073/pnas.72.1.98
  13. Pilar, H. M., Paz, H. M., Alvarez, R., 1993, The carbamate insecticide ZZ-Aphox induced structural changes of gills. live, gall-bladder, heart, and notochord of Rana perezi tadpoles, Arch. Environ. Contam. Toxicol., 25(2), 184-191.
  14. Reynold, E. S., 1963, The use of lead citrate at high pH as an electron-opaque stain in electron microscopy, J. Cell Biol., 17, 208-212. https://doi.org/10.1083/jcb.17.1.208
  15. Shin, S. H., Lee, M. J., Lee, Y. H., Cheong, S. W., Yoon, C. S., 2009, The toxic effects of a pesticide carbaryl on the development of african clawed frog, Xenopus laevis, J. Environ. Sci., 18(11), 1247-1259. https://doi.org/10.5322/JES.2009.18.11.1247
  16. Slack, J. M. W., 1991, The nature of the mesoderminducing signal in Xenopus, a transfilter induction study, Development, 113(2), 661-669.
  17. Tardin, D., 1972, Ultrastructural features of neural induction in Xenopus laevis, J. Anat., 111(1), 1-28.
  18. Tomlin, C. D. S., 1994, The Pesticide Manual, 10th ed., British Crop Protection, UK, 228-230.
  19. Yoon, C. S., Jin, J. H., Park, J. H., Yeo, C. Y., Kim, S. J., Hwang, Y. G., Hong, S. J., Cheong, S. W., 2008, Toxic effects of carbendazim and n-butyl isocyanate, metabolites of the fungicide benomyl, on early development in the African clawed frog, Xenopus laevis, Environ. Toxicol., 23(1), 131-144. https://doi.org/10.1002/tox.20338
  20. Yoon, C. S., Jin, J. H., Park, J. H., Youn, H. J., Cheong, S. W., 2003, The fungicide benomyl inhibits differentiation of neural tissue in the Xenopus embryo and animal cap explants, Environ. Toxicol., 18(5), 327-337. https://doi.org/10.1002/tox.10133
  21. Zarn, J. A., Bruschweiler, B. J., Schlatter, J. R., 2003, Azole fungicides affect mammalian steroidogenesis by inhibiting sterol $14\alpha-demethylas$ and aromatase, Environ. Health Perspect, 111, 255-262.