• 제목/요약/키워드: Triangular Cylinder

검색결과 38건 처리시간 0.02초

삼각봉을 지나는 층류유동에 대한 입구유동각도 변화의 영향 (EFFECTS OF INFLOW ANGLE ON LAMINAR FLOW PAST A TRIANGULAR CYLINDER)

  • 박태선
    • 한국전산유체공학회지
    • /
    • 제16권3호
    • /
    • pp.22-28
    • /
    • 2011
  • Laminar Flow over an equilateral triangular cylinder is studied for several inflow angles. Under an uniform flow of $Re_d$=50,75,100,125,150, the triangular cylinder is rotated by ${\theta}$=$0^{\circ}$,$15^{\circ}$,$30^{\circ}$,$45^{\circ}$,$60^{\circ}$,$75^{\circ}$,$90^{\circ}$,$105^{\circ}$. The governing equations are solved by the PISO algorithm based on the finite volume method of the unstructured grid system. The effects of the inflow angle on the vortex-shedding flows are investigated. The Strouhal number shows a minimum at ${\theta}$=$60^{\circ}$. It is closely related to the variation of pressure and flow structure induced by the movement of separation points.

정면에 정삼각주를 가진 원주의 유동장 특성실험 (Flowfield Experiments for a Circular Cylinder Having a Front Triangular Prism)

  • 노기덕;한상윤;주형관;강좌운;배태범;노우균
    • 대한기계학회논문집B
    • /
    • 제39권9호
    • /
    • pp.751-759
    • /
    • 2015
  • 본 연구는 상류측에 작은 정삼각주를 가진 원주의 유동장 특성을 양 항력측정 실험과 PIV를 이용한 가시화 실험으로 파악한 것이다. 실험 파라메터는 원주의 직경에 대한 정삼각주의 폭비(H/B=0.2~0.6) 및 원주의 전면에서부터 정삼각주까지의 거리 (G/B=0~3) 로 했다. 정삼각주의 폭비를 고정시킨 경우 원주의 항력감소율은 간격비가 증가할수록 증가하다 감소하는 특성을 보였다. 또한 같은 간격비에서는 정삼각주의 폭비가 클수록 원주의 항력감소율이 컸다. 원주의 Strouhal 수는 간격비가 증가할수록 증가하다 감소하는 특성을 보였다. 정삼각주을 설치한 경우 원주 상류측과 하류측에 정체영역이 나타났으며, 그 크기는 상류측은 삼각주의 폭비가 클수록 증가하는데 비해, 하류측은 거의 일정했다.

The near wake of three circular cylinders in an equilateral triangular arrangement at a low Reynolds number Re=100

  • Bai, Honglei;Lin, Yufeng;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • 제30권5호
    • /
    • pp.451-463
    • /
    • 2020
  • Two-dimensional numerical simulations are conducted at a low Reynolds number Re = 100 to investigate the near wake of three identical circular cylinders that are arranged in an equilateral triangular configuration. The incident angle of the three-cylinder configuration with respect to incoming flow is varied from θ = 0° to 60°, while the spacing between adjacent cylinders (L) covers a wide range of L/D = 1.25-7.0, where D is diameter of the cylinder. Typical flow structures in the near wake of the three-cylinder configuration are identified, including a single Karman vortex street, bistable flip-flopping near wake, anti-phase and/or in-phase vortex shedding, shear layer reattachment, and vortex impingement, depending on the configuration (L/D, θ). The behavior of Strouhal number (St) is discussed in detail, echoing the distinct structures of near wake. Furthermore, fluid forces on the individual cylinders are examined, which, though highly depending on (L/D, θ), exhibit a close correlation to the near wake behavior.

Effect of blockage on the drag of a triangular cylinder

  • Yeung, W.W.H.
    • Wind and Structures
    • /
    • 제12권1호
    • /
    • pp.49-61
    • /
    • 2009
  • A method is presented to estimate the form drag and the base pressure on a triangular cylinder in the presence of blockage effect. The Strouhal number, which is found to increase with the flow constriction experimentally by Ramamurthy & Ng (1973), may be decoupled from the blockage effect when re-defined by using the velocity at flow separation and a theoretical wake width. By incorporating this wake width into the momentum equation by Maskell (1963) for the confined flow, a relationship between the form drag and the base pressure is derived. Independently, the experimental data of surface pressure from Ramamurthy & Lee (1973) are found to be independent of the blockage effect when expressed in terms of a modified pressure coefficient involving the pressure at separation. Using the potential flow model by Parkinson & Jandali (1970) and its subsequent development in Yeung & Parkinson (2000) for the unconfined flow, a linear relation between the pressure at separation and the form drag is formulated. By solving the two equations simultaneously with a specified blockage ratio and an apex angle of the triangular cylinder, the predictions of the drag and the base pressure are in reasonable agreement with experimental data. A new theoretical relationship for the Strouhal number, pressure drag coefficient and base pressure proposed in this study allows the confinement effect to be appropriately taken into consideration. The present approach may be extended to three-dimensional bluff bodies.

Flow-induced vibrations of three circular cylinders in an equilateral triangular arrangement subjected to cross-flow

  • Chen, Weilin;Ji, Chunning;Alam, Md. Mahbub;Xu, Dong
    • Wind and Structures
    • /
    • 제29권1호
    • /
    • pp.43-53
    • /
    • 2019
  • Vortex-induced vibration of three circular cylinders (each of diameter D) in an equilateral triangular arrangement is investigated using the immersed boundary method. The cylinders, with one placed upstream and the other two side-by-side downstream, are free to vibrate in the cross-flow direction. The cylinder center-to-center spacing L is adopted as L/D = 2.0. Other parameters include the Reynolds number Re = 100, mass ratio $m^*=2.0$, reduced velocity $U_r=2{\sim}15$ and damping ratio ${\zeta}=0$. Cylinder vibration responses are dependent on $U_r$ and classified into five regimes, i.e. Regime I ($U_r{\leq}3.2$), Regime II ($3.2<U_r{\leq}5.0$), Regime III ($5.0<U_r{\leq}6.4$), Regime IV ($6.4<U_r{\leq}9.2$) and Regime V ($U_r>9.2$). Different facets of vibration amplitude, hydrodynamic forces, wake patterns and displacement spectra are extracted and presented in detail for each regime.

비압축성 점성 유동의 수치적 해석을 위한 사각형-삼각형 혼합 격자계 (Quadrilateral-Triangular Mixed Grid System for Numerical Analysis of Incompressible Viscous Flow)

  • 심은보;박종천;류하상
    • 한국CDE학회논문집
    • /
    • 제1권1호
    • /
    • pp.56-64
    • /
    • 1996
  • A quadrilateral-triangular mixed grid method for the solution of incompressible viscous flow is presented. The solution domain near the body surface is meshed using elliptic grid geneator to acculately simulate the viscous flow. On the other hand, we used unstructured triangular grid system generated by advancing front technique of a simple automatic grid generation algorithm in the rest of the computational domain. The present method thus is capable of not only handling complex geometries but providing accurate solutions near body surface. The numerical technique adopted here is PISO type finite element method which was developed by the present author. Investigations have been made of two-dimensional unsteady flow of Re=550 past a circular cylinder. In the case of use of the unstructured grid only, there exists a considerable amount of difference with the existing results in drag coefficient and vorticity at the cylinder surface; this may be because of the lack of the grid clustering to the surface that is a inevitable requirement to resolve the viscous flow. However, numerical results on the mixed grid show good agreements with the earlier computations and experimental data.

  • PDF

경계요소법에 의한 터보과급 가솔린기관 실린더블럭의 열전도 해석 (Analysis of heat conduction of cylinder block of turbocharged gasoline engine by boundary element method)

  • 김은태;최영돈;홍진관
    • 오토저널
    • /
    • 제11권2호
    • /
    • pp.41-54
    • /
    • 1989
  • In this study, steady state heat conduction problems of the cylinder block of turbocharged gasoline engine were solved by the boundary element method. Surface of the cylinder block was divided by the triangular cells with constant potential. Temperature distribution, effective heat transfer coefficient of the cylinder block were investigated with variation of equivalence ratio, engine speed and boost pressure. The results show that maximum temperature of cylinder block increase rapidly with increasing engine speed and boost pressure. The monolithic structure of cylinder block results in sever inhomogeneity of inner wall temperature at the high engine speed and boost pressure.

  • PDF

Benchmark tests of MITC triangular shell elements

  • Jun, Hyungmin;Mukai, Paul;Kim, San
    • Structural Engineering and Mechanics
    • /
    • 제68권1호
    • /
    • pp.17-38
    • /
    • 2018
  • In this paper, we compare and assess the performance of the standard 3- and 6-node MITC shell elements (Lee and Bathe 2004) with the recently developed MITC triangular elements (Lee et al. 2014, Jeon et al. 2014, Jun et al. 2018) which were based on the partitions of unity approximation, bubble node, or both. The convergence behavior of the shell elements are measured in well-known benchmark tests; four plane stress tests (mesh distortion test, cantilever beam, Cook's skew beam, and MacNeal beam), two plate tests (Morley's skew plate and circular plate), and six shell tests (curved beam, twisted beam, pinched cylinder, hemispherical shells with or without hole, and Scordelis-Lo roof). To precisely compare and evaluate the solution accuracy of the shell elements, different triangular mesh patterns and distorted element mesh are adopted in the benchmark problems. All shell finite elements considered pass the basic tests; namely, the isotropy, the patch, and the zero energy mode tests.

디이젤기관의 방열에 관한 연구 (A study on the heat dissipation of diesel engine)

  • 이창식
    • 오토저널
    • /
    • 제2권1호
    • /
    • pp.39-50
    • /
    • 1980
  • This paper presents the variations obtained in heat flow rate and engine performance of a four-stroke cycle Diesel engine when there were changes in the temperature of cooling water, compression ratio, injection timing of fuel, and other factors. Heat dissipation of engine cylinder was calculated by the heat transfer coefficient of Nusselt's empirical equation and the analysis of distribution of temperature in cylinder barrel was obtained by the finite element method of two-dimensional steady state heat conduction. In this experiment, the out side temperature of cylinder liner was measured by the data logger, and the temperature distribution of liner was computed by the analysis of triangular finite element model under the assumption due to surface heat flux of cylinder inner surface. The results obtained by this study are as follows. Under the given operating condition, the temperature distribution of cylinder liner by using finite element method shows that the mean temperature of barrel is in accordance with the experimental results of Eichelberg and temperature difference is lower than 4.23.deg. C. The heat dissipation of engine decrease in accordance with the decrease of piston mean velocity, compression ratio, and the increase of coolant temperature. Influence on the delay of injection timing of fuel brings about the decrease of heat rejection over the cylinder at constant test conditions.

  • PDF