• Title/Summary/Keyword: Trench Field Ring

Search Result 16, Processing Time 0.025 seconds

A Study on Electrical Characteristics of Trench Field Ring for Breakdown Characteristics (내압특성개선을 위한 트렌치 필드링 설계 및 전기적특성에 관한 연구)

  • Kang, Ey-Goo;Kim, Beum-Jun;Lee, Young-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • In this paper, we proposed trench field ring for breakdown voltage of power devices. The proposed trench field ring was improved 10% efficiency comparing with conventional field ring. we analyzed five parameters of trench field ring for design of trench field ring and carried out 2-D devices simulation and process simulations. That is, we analyzed number of field ring, juction depth, distance of field rings, trench width, doping profield. The proposed trench field ring was better to more 1000 V.

Optimal Design of Field Ring for Power Devices (고 내압 전력 소자 설계를 위한 필드 링 최적화에 관한 연구)

  • Kang, Ey-Goo
    • Journal of IKEEE
    • /
    • v.14 no.3
    • /
    • pp.199-204
    • /
    • 2010
  • In this paper, we proposed trench field ring for breakdown voltage of power devices. The proposed trench field ring was improved 10% efficiency comparing with conventional field ring. we analyzed five parameters of trench field ring for design of trench field ring and carried out 2-D devices simulation and process simulations. That is, we analyzed number of field ring, juction depth, distance of field rings, trench width, doping profield. The proposed trench field ring was better to more 1000V.

A New Trench Termination for Power Semiconductor Devices (전력소자를 위한 새로운 홈구조 터미네이션)

  • Min, W.G.;Park, N.C.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1337-1339
    • /
    • 1998
  • The trench termination scheme is introduced for high voltage devices. The curvature of the depletion region at field limiting ring is critical factor to determine the breakdown voltage. The smooth curvature of the depletion junction alleviate the electric field crowding effect around this region. In the trench field limiting ring, the radius of the depletion region is smaller than conventional field limiting ring, but the distance between every trench is spaced small enough to punchthrough before initiation of local breakdown. The trench field limiting ring on silicon can ne formed by RIE followed by oxidation on side wall surface of the trench, and polysilicon filling. The combined termination of this trench floating field ring and field plate have been designed and analyzed. The breakdown simulation by 2-dimensional TCAD shows that the cylindrical junction breakdown voltage for substrate doping might be 99 percent of the ideal breakdwon voltage for substrate doping concentration of $3\times10^{14}cm^{-3}$ with about $100{\mu}m$ of lateral termination width.

  • PDF

A Study of Field-Ring Design using a Variety of Analysis Method in Insulated Gate Bipolar Transistor (IGBT)

  • Jung, Eun Sik;Kyoung, Sin-Su;Chung, Hunsuk;Kang, Ey Goo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1995-2003
    • /
    • 2014
  • Power semiconductor devices have been the major backbone for high-power electronic devices. One of important parameters in view of power semiconductor devices often characterize with a high breakdown voltage. Therefore, many efforts have been made, since the development of the Insulated Gate Bipolar Transistor (IGBT), toward having higher level of breakdown voltage, whereby the typical design thereof is focused on the structure using the field ring. In this study, in an attempt to make up more optimized field-ring structure, the characteristics of the field ring were investigated with the use of theoretical arithmetic model and methodologically the design of experiments (DOE). In addition, the IGBT having the field-ring structure was designed via simulation based on the finding from the above, the result of which was also analyzed. Lastly, the current study described the trench field-ring structure taking advantages of trench-etching process having the improved field-ring structure, not as simple as the conventional one. As a result of the simulation, it was found that the improved trench field-ring structure leads to more desirable voltage divider than relying on the conventional field-ring structure.

The Research on Trench Etched Field Ring with Dual Ion-Implantation for Power Devices (이중 이온주입 공정을 이용한 트렌치 필드링 설계 최적화 및 전기적 특성에 관한 연구)

  • Yang, Sung-Min;Oh, Ju-Hyun;Bae, Young-Seok;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.5
    • /
    • pp.364-367
    • /
    • 2010
  • The dual ion-implantation trench edge termination techniques were investigated and optimized using a two-dimensional device simulator. By trenching the field ring site which would be dual implanted, a better blocking capability can be obtained. The results show that the p-n junction with dual implanted junction field-ring can accomplish nearly 20% increase of breakdown voltage in comparison with the conventional trench field-rings. The fabrication is relatively difficult. But the trench etched field ring with dual ion-implantation is surpassed for breakdown voltage and consume same area and extensive device simulations as well as qualitative analysis confirm these conclusions.

The Process and Fabrication of 500 V Unified Trench Gate Power MOSFET (500 V급 Unified Trench Gate Power MOSFET 공정 및 제작에 관한 연구)

  • Kang, Ey-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.10
    • /
    • pp.720-725
    • /
    • 2013
  • Power MOSFET operate voltage-driven devices, design to control the large power switching device for power supply, converter, motor control, etc. We have analyzed trench process, field limit ring process for fabrication of unified trench gate power MOSFET. And we have analyzed electrical characteristics of fabricated unified trench gate power MOSFET. The optimal trench process was based on SF6. After we carried out SEM measurement, we obtained superior trench gate and field limit ring process. And we compared electrical characteristics of planar and trench gate unified power MOSFET after completing device fabrication. As a result, the both of them was obtained 500 V breakdown voltage. However trench gate unified power MOSFET was shown improved Vth and on state voltage drop characteristics than planar gate unified power MOSFET.

Design of Unified Trench Gate Power MOSFET for Low on Resistance and Chip Efficiency (낮은 온저항과 칩 효율화를 위한 Unified Trench Gate Power MOSFET의 설계에 관한 연구)

  • Kang, Ey-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.10
    • /
    • pp.713-719
    • /
    • 2013
  • Power MOSFET operate voltage-driven devices, design to control the large power switching device for power supply, converter, motor control, etc. We have optimal designed planar and trench gate power MOSFET for high breakdown voltage and low on resistance. When we have designed $6,580{\mu}m{\times}5,680{\mu}m$ of chip size and 20 A current, on resistance of trench gate power MOSFET was low than planar gate power MOSFET. The on state voltage of trench gate power MOSFET was improved from 4.35 V to 3.7 V. At the same time, we have designed unified field limit ring for trench gate power MOFET. It is Junction Termination Edge type. As a result, we have obtained chip shrink effect and low on resistance because conventional field limit ring was convert to unify.

Analysis of Electrical Characteristics According to Fabrication of 500 V Unified Trench Gate Power MOSFET

  • Kang, Ey Goo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.4
    • /
    • pp.222-226
    • /
    • 2016
  • This paper investigated the trench process, unified field limit ring, and other products for the development of a 500 V-level unified trench gate power MOSFET. The optimal base chemistry for the device was found to be SF6. In SEM analysis, the step process of the trench gate and field limit ring showed outstanding process results. After finalizing device design, its electrical characteristics were compared and contrasted with those of a planar device. It was shown that, although both devices maintained a breakdown voltage of 500 V, the Vth and on-state voltage drop characteristics were better than those of the planar type.

The Research of Deep Junction Field Ring using Trench Etch Process for Power Device Edge Termination

  • Kim, Yo-Han;Kang, Ey-Goo;Sung, Man-Young
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.235-238
    • /
    • 2007
  • The planar edge termination techniques of field-ring and deep junction field-ring were investigated and optimized using a two-dimensional device simulator TMA MEDICI. By trenching the field ring site which would be implanted, a better blocking capability can be obtained. The results show that the p-n junction with deep junction field-ring can accomplish near 30% increase of breakdown voltage in comparison with the conventional field-rings. The deep junctionfield-rings are easy to design and fabricate and consume same area but they are relatively sensitive to surface charge. Extensive device simulations as well as qualitative analyses confirm these conclusions.

  • PDF

A New Junction Termination Structure by Employing Trench and FLR (Trench와 FLR을 이용한 새로운 접합 마감 구조)

  • 하민우;오재근;최연익;한민구
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.6
    • /
    • pp.257-260
    • /
    • 2003
  • We have proposed the junction termination structure of IGBT (Insulated Gate Bipolar Transistor) by employing trench and FLR (Field Limiting Ring), which decrease the junction termination area at the same breakdown voltage. Our proposed junction termination structure, trench FLR is verified by numerical simulator MEDICI. In 600V rated device, the junction termination area is decreased 20% compared with that of the conventional FLR structure. The breakdown voltage of trench FLR with 4 trenches is 768 V, 99 % of ideal parallel-plane junction(1-D) $BV_ceo$.