• Title/Summary/Keyword: Tree-based algorithms

Search Result 385, Processing Time 0.022 seconds

High Performance Pattern Matching algorithm with Suffix Tree Structure for Network Security (네트워크 보안을 위한 서픽스 트리 기반 고속 패턴 매칭 알고리즘)

  • Oh, Doohwan;Ro, Won Woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.110-116
    • /
    • 2014
  • Pattern matching algorithms are widely used in computer security systems such as computer networks, ubiquitous networks, sensor networks, and so on. However, the advances in information technology causes grow on the amount of data and increase on the computation complexity of pattern matching processes. Therefore, there is a strong demand for a novel high performance pattern matching algorithms. In light of this fact, this paper newly proposes a suffix tree based pattern matching algorithm. The suffix tree is constructed based on the suffix values of all patterns. Then, the shift nodes which informs how many characters can be skipped without matching operations are added to the suffix tree in order to boost matching performance. The proposed algorithm reduces memory usage on the suffix tree and the amount of matching operations by the shift nodes. From the performance evaluation, our algorithm achieved 24% performance gain compared with the traditional algorithm named as Wu-Manber.

Optimum Range Cutting for Packet Classification (최적화된 영역 분할을 이용한 패킷 분류 알고리즘)

  • Kim, Hyeong-Gee;Park, Kyong-Hye;Lim, Hye-Sook
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.6
    • /
    • pp.497-509
    • /
    • 2008
  • Various algorithms and architectures for efficient packet classification have been widely studied. Packet classification algorithms based on a decision tree structure such as HiCuts and HyperCuts are known to be the best by exploiting the geometrical representation of rules in a classifier. However, the algorithms are not practical since they involve complicated heuristics in selecting a dimension of cuts and determining the number of cuts at each node of the decision tree. Moreover, the cutting is not efficient enough since the cutting is based on regular interval which is not related to the actual range that each rule covers. In this paper, we proposed a new efficient packet classification algorithm using a range cutting. The proposed algorithm primarily finds out the ranges that each rule covers in 2-dimensional prefix plane and performs cutting according to the ranges. Hence, the proposed algorithm constructs a very efficient decision tree. The cutting applied to each node of the decision tree is optimal and deterministic not involving the complicated heuristics. Simulation results for rule sets generated using class-bench databases show that the proposed algorithm has better performance in average search speed and consumes up to 3-300 times less memory space compared with previous cutting algorithms.

An Estimation of Fitness Evaluation in Evolutionary Algorithm for the Rectilinear Steiner Tree Problem (직각거리 스타이너 나무 문제의 하이브리드 진화 해법에서 효율적인 적합도 추정에 관한 연구)

  • Yang, Byoung-Hak
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.589-598
    • /
    • 2006
  • The rectilinear Steiner tree problem is to find a minimum-length rectilinear interconnection of a set of terminals in the plane. It is well known that the solution to this problem will be the minimal spanning tree (MST) on some set Steiner points. A hybrid evolutionary algorithm is introduced based upon the Prim algorithm. The Prim algorithm for the fitness evaluation requires heavy calculation time. The fitness value of parents is inherited to their child and the fitness value of child is estimated by the inherited structure of tree. We introduce four alternative evolutionary algorithms, Experiment result shows that the calculation time is reduced to 25% without loosing the solution quality by using the fitness estimation.

  • PDF

P2P Traffic Classification using Advanced Heuristic Rules and Analysis of Decision Tree Algorithms (개선된 휴리스틱 규칙 및 의사 결정 트리 분석을 이용한 P2P 트래픽 분류 기법)

  • Ye, Wujian;Cho, Kyungsan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.3
    • /
    • pp.45-54
    • /
    • 2014
  • In this paper, an improved two-step P2P traffic classification scheme is proposed to overcome the limitations of the existing methods. The first step is a signature-based classifier at the packet-level. The second step consists of pattern heuristic rules and a statistics-based classifier at the flow-level. With pattern heuristic rules, the accuracy can be improved and the amount of traffic to be classified by statistics-based classifier can be reduced. Based on the analysis of different decision tree algorithms, the statistics-based classifier is implemented with REPTree. In addition, the ensemble algorithm is used to improve the performance of statistics-based classifier Through the verification with the real datasets, it is shown that our hybrid scheme provides higher accuracy and lower overhead compared to other existing schemes.

A Hybrid Hyper Query Tree Algorithm for RFID System (RFID 시스템을 위한 하이브리드 하이퍼 쿼리 트리 알고리즘)

  • Kim, Tae-Hee;Lee, Seong-Joon;Ahn, Kwang-Seon
    • The KIPS Transactions:PartA
    • /
    • v.15A no.5
    • /
    • pp.287-294
    • /
    • 2008
  • A tag collision arbitration algorithm for RFID passive tags is one of the important issues for fast tag identification, since reader and tag have a shared wireless channel in RFID system. This paper suggests Hyper-Hybrid Query Tree algorithm to prevent the tag-collisions. The suggested algorithms determine the specified point in time for tag to transfer ID to reader by using value 1 of the upper 3 bit based on Query Tree. Also, because the transferred upper 3 bits of tag is different depending on the time of transfer, it is possible to predict in the suggested Algorithm. In the performance evaluation through simulation, it shows the suggested algorithm has higher performance in the number of queries compared to other Tree-based protocols.

Classification and Analysis of Data Mining Algorithms (데이터마이닝 알고리즘의 분류 및 분석)

  • Lee, Jung-Won;Kim, Ho-Sook;Choi, Ji-Young;Kim, Hyon-Hee;Yong, Hwan-Seung;Lee, Sang-Ho;Park, Seung-Soo
    • Journal of KIISE:Databases
    • /
    • v.28 no.3
    • /
    • pp.279-300
    • /
    • 2001
  • Data mining plays an important role in knowledge discovery process and usually various existing algorithms are selected for the specific purpose of the mining. Currently, data mining techniques are actively to the statistics, business, electronic commerce, biology, and medical area and currently numerous algorithms are being researched and developed for these applications. However, in a long run, only a few algorithms, which are well-suited to specific applications with excellent performance in large database, will survive. So it is reasonable to focus our effort on those selected algorithms in the future. This paper classifies about 30 existing algorithms into 7 categories - association rule, clustering, neural network, decision tree, genetic algorithm, memory-based reasoning, and bayesian network. First of all, this work analyzes systematic hierarchy and characteristics of algorithms and we present 14 criteria for classifying the algorithms and the results based on this criteria. Finally, we propose the best algorithms among some comparable algorithms with different features and performances. The result of this paper can be used as a guideline for data mining researches as well as field applications of data mining.

  • PDF

Augmenting Quasi-Tree Search Algorithm for Maximum Homogenous Information Flow with Single Source/Multiple Sinks

  • Fujita, Koichi;Watanabe, Hitoshi
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.462-465
    • /
    • 2002
  • This paper presents a basic theory of information flow from single sending point to multiple receiving points, where new theories of algebraic system called "Hybrid Vector Space" and flow vector space play important roles. Based on the theory, a new algorithm for finding maximum homogenous information flow is proposed, where homogenous information flow means the flow of the same contents of information delivered to multiple clients at a time. Effective multi-routing algorithms fur tree-shape delivery rout search are presented.

  • PDF

Tree-based Deployment Algorithm in Mobile Sensor Networks (이동 센서 네트워크에서 트리 기반의 배치 알고리즘)

  • Moon, Chong-Chun;Park, Jae-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.11
    • /
    • pp.1138-1143
    • /
    • 2006
  • Sensor deployment is an important issue in the mobile wireless sensor network. In this paper, we propose a deployment algorithm for mobile sensor network to spread out mobile sensor nodes widely as well as regularly. Since the proposed algorithm uses tree topology in deploying the sensor nodes, calculating power as well as spreading speed can be reduced compare to other deployment algorithms. The performance of the proposed algorithm is simulated using NS-2 simulator and demonstrated.

A Survey of Applications of Artificial Intelligence Algorithms in Eco-environmental Modelling

  • Kim, Kang-Suk;Park, Joon-Hong
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.102-110
    • /
    • 2009
  • Application of artificial intelligence (AI) approaches in eco-environmental modeling has gradually increased for the last decade. Comprehensive understanding and evaluation on the applicability of this approach to eco-environmental modeling are needed. In this study, we reviewed the previous studies that used AI-techniques in eco-environmental modeling. Decision Tree (DT) and Artificial Neural Network (ANN) were found to be major AI algorithms preferred by researchers in ecological and environmental modeling areas. When the effect of the size of training data on model prediction accuracy was explored using the data from the previous studies, the prediction accuracy and the size of training data showed nonlinear correlation, which was best-described by hyperbolic saturation function among the tested nonlinear functions including power and logarithmic functions. The hyperbolic saturation equations were proposed to be used as a guideline for optimizing the size of training data set, which is critically important in designing the field experiments required for training AI-based eco-environmental modeling.

Design and Implementation of a Trajectory-based Index Structure for Moving Objects on a Spatial Network (공간 네트워크상의 이동객체를 위한 궤적기반 색인구조의 설계 및 구현)

  • Um, Jung-Ho;Chang, Jae-Woo
    • Journal of KIISE:Databases
    • /
    • v.35 no.2
    • /
    • pp.169-181
    • /
    • 2008
  • Because moving objects usually move on spatial networks, efficient trajectory index structures are required to achieve good retrieval performance on their trajectories. However, there has been little research on trajectory index structures for spatial networks such as FNR-tree and MON-tree. But, because FNR-tree and MON-tree are stored by the unit of the moving object's segment, they can't support the whole moving objects' trajectory. In this paper, we propose an efficient trajectory index structure, named Trajectory of Moving objects on Network Tree(TMN Tree), for moving objects. For this, we divide moving object data into spatial and temporal attribute, and preserve moving objects' trajectory. Then, we design index structure which supports not only range query but trajectory query. In addition, we divide user queries into spatio-temporal area based trajectory query, similar-trajectory query, and k-nearest neighbor query. We propose query processing algorithms to support them. Finally, we show that our trajectory index structure outperforms existing tree structures like FNR-Tree and MON-Tree.