• Title/Summary/Keyword: Tree-based algorithms

Search Result 385, Processing Time 0.026 seconds

Frequent Itemset Search Using LSI Similarity (LSI 유사도를 이용한 효율적인 빈발항목 탐색 알고리즘)

  • Ko, Younhee;Kim, Hyeoncheol;Lee, Wongyu
    • The Journal of Korean Association of Computer Education
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • We introduce a efficient vertical mining algorithm that reduces searching complexity for frequent k-itemsets significantly. This method includes sorting items by their LSI(Least Support Itemsets) similarity and then searching frequent itemsets in tree-based manner. The search tree structure provides several useful heuristics and therefore, reduces search space significantly at early stages. Experimental results on various data sets shows that the proposed algorithm improves searching performance compared to other algorithms, especially for a database having long pattern.

  • PDF

Data Mining Approach to Clinical Decision Support System for Hypertension Management (고혈압관리를 위한 의사지원결정시스템의 데이터마이닝 접근)

  • 김태수;채영문;조승연;윤진희;김도마
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.203-212
    • /
    • 2002
  • This study examined the predictive power of data mining algorithms by comparing the performance of logistic regression and decision tree algorithm, called CHAID (Chi-squared Automatic Interaction Detection), On the contrary to the previous studies, decision tree performed better than logistic regression. We have also developed a CDSS (Clinical Decision Support System) with three modules (doctor, nurse, and patient) based on data warehouse architecture. Data warehouse collects and integrates relevant information from various databases from hospital information system (HIS ). This system can help improve decision making capability of doctors and improve accessibility of educational material for patients.

  • PDF

A Study of Decision Tree Modeling for Predicting the Prosody of Corpus-based Korean Text-To-Speech Synthesis (한국어 음성합성기의 운율 예측을 위한 의사결정트리 모델에 관한 연구)

  • Kang, Sun-Mee;Kwon, Oh-Il
    • Speech Sciences
    • /
    • v.14 no.2
    • /
    • pp.91-103
    • /
    • 2007
  • The purpose of this paper is to develop a model enabling to predict the prosody of Korean text-to-speech synthesis using the CART and SKES algorithms. CART prefers a prediction variable in many instances. Therefore, a partition method by F-Test was applied to CART which had reduced the number of instances by grouping phonemes. Furthermore, the quality of the text-to-speech synthesis was evaluated after applying the SKES algorithm to the same data size. For the evaluation, MOS tests were performed on 30 men and women in their twenties. Results showed that the synthesized speech was improved in a more clear and natural manner by applying the SKES algorithm.

  • PDF

Selecting Machine Learning Model Based on Natural Language Processing for Shanghanlun Diagnostic System Classification (자연어 처리 기반 『상한론(傷寒論)』 변병진단체계(辨病診斷體系) 분류를 위한 기계학습 모델 선정)

  • Young-Nam Kim
    • 대한상한금궤의학회지
    • /
    • v.14 no.1
    • /
    • pp.41-50
    • /
    • 2022
  • Objective : The purpose of this study is to explore the most suitable machine learning model algorithm for Shanghanlun diagnostic system classification using natural language processing (NLP). Methods : A total of 201 data items were collected from 『Shanghanlun』 and 『Clinical Shanghanlun』, 'Taeyangbyeong-gyeolhyung' and 'Eumyangyeokchahunobokbyeong' were excluded to prevent oversampling or undersampling. Data were pretreated using a twitter Korean tokenizer and trained by logistic regression, ridge regression, lasso regression, naive bayes classifier, decision tree, and random forest algorithms. The accuracy of the models were compared. Results : As a result of machine learning, ridge regression and naive Bayes classifier showed an accuracy of 0.843, logistic regression and random forest showed an accuracy of 0.804, and decision tree showed an accuracy of 0.745, while lasso regression showed an accuracy of 0.608. Conclusions : Ridge regression and naive Bayes classifier are suitable NLP machine learning models for the Shanghanlun diagnostic system classification.

  • PDF

Method of Analyzing Important Variables using Machine Learning-based Golf Putting Direction Prediction Model (머신러닝 기반 골프 퍼팅 방향 예측 모델을 활용한 중요 변수 분석 방법론)

  • Kim, Yeon Ho;Cho, Seung Hyun;Jung, Hae Ryun;Lee, Ki Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • Objective: This study proposes a methodology to analyze important variables that have a significant impact on the putting direction prediction using a machine learning-based putting direction prediction model trained with IMU sensor data. Method: Putting data were collected using an IMU sensor measuring 12 variables from 6 adult males in their 20s at K University who had no golf experience. The data was preprocessed so that it could be applied to machine learning, and a model was built using five machine learning algorithms. Finally, by comparing the performance of the built models, the model with the highest performance was selected as the proposed model, and then 12 variables of the IMU sensor were applied one by one to analyze important variables affecting the learning performance. Results: As a result of comparing the performance of five machine learning algorithms (K-NN, Naive Bayes, Decision Tree, Random Forest, and Light GBM), the prediction accuracy of the Light GBM-based prediction model was higher than that of other algorithms. Using the Light GBM algorithm, which had excellent performance, an experiment was performed to rank the importance of variables that affect the direction prediction of the model. Conclusion: Among the five machine learning algorithms, the algorithm that best predicts the putting direction was the Light GBM algorithm. When the model predicted the putting direction, the variable that had the greatest influence was the left-right inclination (Roll).

Determination of the stage and grade of periodontitis according to the current classification of periodontal and peri-implant diseases and conditions (2018) using machine learning algorithms

  • Kubra Ertas;Ihsan Pence;Melike Siseci Cesmeli;Zuhal Yetkin Ay
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.1
    • /
    • pp.38-53
    • /
    • 2023
  • Purpose: The current Classification of Periodontal and Peri-Implant Diseases and Conditions, published and disseminated in 2018, involves some difficulties and causes diagnostic conflicts due to its criteria, especially for inexperienced clinicians. The aim of this study was to design a decision system based on machine learning algorithms by using clinical measurements and radiographic images in order to determine and facilitate the staging and grading of periodontitis. Methods: In the first part of this study, machine learning models were created using the Python programming language based on clinical data from 144 individuals who presented to the Department of Periodontology, Faculty of Dentistry, Süleyman Demirel University. In the second part, panoramic radiographic images were processed and classification was carried out with deep learning algorithms. Results: Using clinical data, the accuracy of staging with the tree algorithm reached 97.2%, while the random forest and k-nearest neighbor algorithms reached 98.6% accuracy. The best staging accuracy for processing panoramic radiographic images was provided by a hybrid network model algorithm combining the proposed ResNet50 architecture and the support vector machine algorithm. For this, the images were preprocessed, and high success was obtained, with a classification accuracy of 88.2% for staging. However, in general, it was observed that the radiographic images provided a low level of success, in terms of accuracy, for modeling the grading of periodontitis. Conclusions: The machine learning-based decision system presented herein can facilitate periodontal diagnoses despite its current limitations. Further studies are planned to optimize the algorithm and improve the results.

Classifying Social Media Users' Stance: Exploring Diverse Feature Sets Using Machine Learning Algorithms

  • Kashif Ayyub;Muhammad Wasif Nisar;Ehsan Ullah Munir;Muhammad Ramzan
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.79-88
    • /
    • 2024
  • The use of the social media has become part of our daily life activities. The social web channels provide the content generation facility to its users who can share their views, opinions and experiences towards certain topics. The researchers are using the social media content for various research areas. Sentiment analysis, one of the most active research areas in last decade, is the process to extract reviews, opinions and sentiments of people. Sentiment analysis is applied in diverse sub-areas such as subjectivity analysis, polarity detection, and emotion detection. Stance classification has emerged as a new and interesting research area as it aims to determine whether the content writer is in favor, against or neutral towards the target topic or issue. Stance classification is significant as it has many research applications like rumor stance classifications, stance classification towards public forums, claim stance classification, neural attention stance classification, online debate stance classification, dialogic properties stance classification etc. This research study explores different feature sets such as lexical, sentiment-specific, dialog-based which have been extracted using the standard datasets in the relevant area. Supervised learning approaches of generative algorithms such as Naïve Bayes and discriminative machine learning algorithms such as Support Vector Machine, Naïve Bayes, Decision Tree and k-Nearest Neighbor have been applied and then ensemble-based algorithms like Random Forest and AdaBoost have been applied. The empirical based results have been evaluated using the standard performance measures of Accuracy, Precision, Recall, and F-measures.

A Branch-and-price Algorithm for the Minimum ADM Problem on WDM Ring Networks (WDM 링에서의 ADM 최소화 문제에 대한 분지평가 해법)

  • Chung, Ji-Bok
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.4
    • /
    • pp.51-60
    • /
    • 2007
  • In this study, we consider the minimum ADM problem which is the fundamental problem for the cost-effective design of SONET ADM embedded in WDM ring networks. To minimize the number of SONET ADMs, efficient algorithms for the routing and wavelength assignment are needed. We propose a mathematical model based on the graph theory for the problem and propose a branch-and-price approach to solve the suggested model effectively within reasonable time. By exploiting the mathematical structure of ring networks, we developed polynomial time algorithms for column generation subroutine at branch-and-bound tree. In a computer simulation study, the suggested approach can find the optimal solution for sufficient size networks and shows better performance than the greedy heuristic method.

Development of a Semi-automatic Search Program for Crown Delineation Based on Watershed and Valley Following Algorithms

  • Sim, Woodam;Park, Jeongmook;Lee, Jungsoo
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.2
    • /
    • pp.142-144
    • /
    • 2018
  • This paper discusses the development of semi-automatic search program for crown delineation in stand level. The crown of an individual tree was delineated by applying the Watershed (WS) and Valley Following (VF) algorithms. Unmanned Aerial Vehicle (UAV) images were used in the semi-automatic search program to delineate the crown area. The overall accuracy and Khat were used in accuracy assessment. WS algorithm's model showed the overall accuracy and Khat index of 0.80 and 0.59, respectively, in Plot 1. However, the overall accuracy and Khat of VF algorithm's model were 0.78 and 0.51, respectively, in Plot 2.

Real-time collision-free landing path planning for drone deliveries in urban environments

  • Hanseob Lee;Sungwook Cho;Hoon Jung
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.746-757
    • /
    • 2023
  • This study presents a novel safe landing algorithm for urban drone deliveries. The rapid advancement of drone technology has given rise to various delivery services for everyday necessities and emergency relief efforts. However, the reliability of drone delivery technology is still insufficient for application in urban environments. The proposed approach uses the "landing angle control" method to allow the drone to land vertically and a rapidly exploring random tree-based collision avoidance algorithm to generate safe and efficient vertical landing paths for drones while avoiding common urban obstacles like trees, street lights, utility poles, and wires; these methods allow for precise and reliable urban drone delivery. We verified the approach within a Gazebo simulation operated through ROS using a six-degree-of-freedom drone model and sensors with similar specifications to actual models. The performance of the algorithms was tested in various scenarios by comparing it with that of stateof-the-art 3D path planning algorithms.