• Title/Summary/Keyword: Tree-based algorithms

Search Result 385, Processing Time 0.024 seconds

Improved Algorithms for Minimum Cost Replicated Web Contents Distribution Tree (통신비용을 최소화하는 복제 웹컨텐츠 분배나무 구성을 위한 개선된 알고리즘)

  • Hong Sung-Pil;Lee Dong-Gwon
    • Korean Management Science Review
    • /
    • v.22 no.2
    • /
    • pp.99-107
    • /
    • 2005
  • Recently, Tang and Chanson proposed a minimum cost distribution model for replicated Web contents subject to an expiration-based consistency management. Their model is a progress in that it can consider multiple replicas via the network of servers located on the Web. The proposed greedy heuristic, however, has an undesirable feature that the solution tends to converge a local optimum at an early stage of the algorithm. in this paper, we propose an algorithm based on a simple idea of preventing the early local convergence. The new algorithm provides solutions whose cost are, on the average, 27$\%$ lower than in the previous algorithm.

On the Performance Analysis of an Automatic Neural Network Signal Classifier (신경회로망을 이용한 신호 자동식별기 구현 및 성능분석)

  • Yoon, Byung-Soo;Yang, Seong-Chul;Nam, Sang-Won;Oh, Won-Tcheon
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.397-399
    • /
    • 1994
  • In this paper a feature-based automatic neural network signal classifier is presented, where five neural network algorithms such as MLP, RBF, LVQ2, MLP-Tree and LVQ-Tree are combined in parallel to classifiy various signals from their features, based on the majority vote method. To demonstrate the performance and applicability of the proposed signal classifier, some test results for the classification of synthetic waveforms and power disturbances are provided.

  • PDF

Enhancement of Text Classification Method (텍스트 분류 기법의 발전)

  • Shin, Kwang-Seong;Shin, Seong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.155-156
    • /
    • 2019
  • Traditional machine learning based emotion analysis methods such as Classification and Regression Tree (CART), Support Vector Machine (SVM), and k-nearest neighbor classification (kNN) are less accurate. In this paper, we propose an improved kNN classification method. Improved methods and data normalization achieve the goal of improving accuracy. Then, three classification algorithms and an improved algorithm were compared based on experimental data.

  • PDF

Remote Fault Diagnosis Method of Wind Power Generation Equipment Based on Internet of Things

  • Bing, Chen;Ding, Liu
    • Journal of Information Processing Systems
    • /
    • v.18 no.6
    • /
    • pp.822-829
    • /
    • 2022
  • According to existing study into the remote fault diagnosis procedure, the current diagnostic approach has an imperfect decision model, which only supports communication in a close distance. An Internet of Things (IoT)-based remote fault diagnostic approach for wind power equipment is created to address this issue and expand the communication distance of fault diagnosis. Specifically, a decision model for active power coordination is built with the mechanical energy storage of power generation equipment with a remote diagnosis mode set by decision tree algorithms. These models help calculate the failure frequency of bearings in power generation equipment, summarize the characteristics of failure types and detect the operation status of wind power equipment through IoT. In addition, they can also generate the point inspection data and evaluate the equipment status. The findings demonstrate that the average communication distances of the designed remote diagnosis method and the other two remote diagnosis methods are 587.46 m, 435.61 m, and 454.32 m, respectively, indicating its application value.

A study on integrating and discovery of semantic based knowledge model (의미 기반의 지식모델 통합과 탐색에 관한 연구)

  • Chun, Seung-Su
    • Journal of Internet Computing and Services
    • /
    • v.15 no.6
    • /
    • pp.99-106
    • /
    • 2014
  • Generation and analysis methods have been proposed in recent years, such as using a natural language and formal language processing, artificial intelligence algorithms based knowledge model is effective meaning. its semantic based knowledge model has been used effective decision making tree and problem solving about specific context. and it was based on static generation and regression analysis, trend analysis with behavioral model, simulation support for macroeconomic forecasting mode on especially in a variety of complex systems and social network analysis. In this study, in this sense, integrating knowledge-based models, This paper propose a text mining derived from the inter-Topic model Integrated formal methods and Algorithms. First, a method for converting automatically knowledge map is derived from text mining keyword map and integrate it into the semantic knowledge model for this purpose. This paper propose an algorithm to derive a method of projecting a significant topic map from the map and the keyword semantically equivalent model. Integrated semantic-based knowledge model is available.

RSP-DS: Real Time Sequential Patterns Analysis in Data Streams (RSP-DS: 데이터 스트림에서의 실시간 순차 패턴 분석)

  • Shin Jae-Jyn;Kim Ho-Seok;Kim Kyoung-Bae;Bae Hae-Young
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.9
    • /
    • pp.1118-1130
    • /
    • 2006
  • Existed pattern analysis algorithms in data streams environment have researched performance improvement and effective memory usage. But when new data streams come, existed pattern analysis algorithms have to analyze patterns again and have to generate pattern tree again. This approach needs many calculations in real situation that needs real time pattern analysis. This paper proposes a method that continuously analyzes patterns of incoming data streams in real time. This method analyzes patterns fast, and thereafter obtains real time patterns by updating previously analyzed patterns. The incoming data streams are divided into several sequences based on time based window. Informations of the sequences are inputted into a hash table. When the number of the sequences are over predefined bound, patterns are analyzed from the hash table. The patterns form a pattern tree, and later created new patterns update the pattern tree. In this way, real time patterns are always maintained in the pattern tree. During pattern analysis, suffixes of both new pattern and existed pattern in the tree can be same. Then a pointer is created from the new pattern to the existed pattern. This method reduce calculation time during duplicated pattern analysis. And old patterns in the tree are deleted easily by FIFO method. The advantage of our algorithm is proved by performance comparison with existed method, MILE, in a condition that pattern is changed continuously. And we look around performance variation by changing several variable in the algorithm.

  • PDF

Development of Interactive 3D Volume Visualization Techniques Using Contour Trees (컨투어 트리를 이용한 삼차원 볼륨 영상의 대화형 시각화 기법 개발)

  • Sohn, Bong-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.11
    • /
    • pp.67-76
    • /
    • 2011
  • This paper describes the development of interactive visualization techniques and a program that allow us to visualize the structure of the volume data and interactively select and visualize the isosurface components using contour tree. The main characteristic of this technique is to provide an algorithm that draws the contour tree in 2D plane in a way that users easily understand the tree, and to provide an algorithm that can efficiently extract an isosurface component utilizing GPU's parallel architecture. The main characteristic of the program we developed through implementing the algorithms is to provide us with an interactive user interface based on the contour tree for extracting an isosurface component and visualization that integrates with previous isosurface and volume rendering techniques. To show the excelland vof our methods, we applied 3D biomedical volume data to our algorithms. The results show that we could interactively select the isosurface components that represent a polypeptide chain, a ventricle and a femur respectively using the user interface based on our contour tree layout method, and extract the isosurface components with 3x-4x higher speed compared to previous methods.

On the Tree Model grown by one-sided purity (단측 순수성에 의한 나무모형의 성장에 대하여)

  • 김용대;최대우
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.1
    • /
    • pp.17-25
    • /
    • 2001
  • Tree model is the most popular classification algorithm in data mining due to easy interpretation of the result. In CART(Breiman et al., 1984) and C4.5(Quinlan, 1993) which are representative of tree algorithms, the split fur classification proceeds to attain the homogeneous terminal nodes with respect to the composition of levels in target variable. But, fur instance, in the chum prediction modeling fur CRM(Customer Relationship management), the rate of churn is generally very low although we are interested in mining the churners. Thus it is difficult to get accurate prediction modes using tree model based on the traditional split rule, such as mini or deviance. Buja and Lee(1999) introduced a new split rule, one-sided purity for classifying minor interesting group. In this paper, we compared one-sided purity with traditional split rule, deviance analyzing churning vs. non-churning data of ISP company. Also reviewing the result of tree model based on one-sided purity with some simulated data, we discussed problems and researchable topics.

  • PDF

A Study on the Improvement of Injection Molding Process Using CAE and Decision-tree (CAE와 Decision-tree를 이용한 사출성형 공정개선에 관한 연구)

  • Hwang, Soonhwan;Han, Seong-Ryeol;Lee, Hoojin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.580-586
    • /
    • 2021
  • The CAT methodology is a numerical analysis technique using CAE. Recently, a methodology of applying artificial intelligence techniques to a simulation has been studied. A previous study compared the deformation results according to the injection molding process using a machine learning technique. Although MLP has excellent prediction performance, it lacks an explanation of the decision process and is like a black box. In this study, data was generated using Autodesk Moldflow 2018, an injection molding analysis software. Several Machine Learning Algorithms models were developed using RapidMiner version 9.5, a machine learning platform software, and the root mean square error was compared. The decision-tree showed better prediction performance than other machine learning techniques with the RMSE values. The classification criterion can be increased according to the Maximal Depth that determines the size of the Decision-tree, but the complexity also increases. The simulation showed that by selecting an intermediate value that satisfies the constraint based on the changed position, there was 7.7% improvement compared to the previous simulation.

Border-based HSFI Algorithm for Hiding Sensitive Frequent Itemsets (민감한 빈발항목집합을 숨기기 위한 경계기반 HSFI 알고리즘)

  • Lee, Dan-Young;An, Hyoung-Keun;Koh, Jae-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.10
    • /
    • pp.1323-1334
    • /
    • 2011
  • This paper suggests the border based HSFI algorithm to hide sensitive frequent itemsets. Node formation of FP-Tree which is different from the previous one uses the border to minimize the impacts of nonsensitive frequent itemsets in hiding process, including the organization of sensitive and border information, and all transaction as well. As a result of applying HSFI algorithms, it is possible to be the example transaction database, by significantly reducing the lost items, it turns out that HSFI algorithm is more effective than the existing algorithm for maintaining the quality of more improved database.