• Title/Summary/Keyword: Tree mining

Search Result 566, Processing Time 0.026 seconds

Design and Implementation of Web Crawler Wrappers to Collect User Reviews on Shopping Mall with Various Hierarchical Tree Structure (다양한 계층 트리 구조를 갖는 쇼핑몰 상에서의 상품평 수집을 위한 웹 크롤러 래퍼의 설계 및 구현)

  • Kang, Han-Hoon;Yoo, Seong-Joon;Han, Dong-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.318-325
    • /
    • 2010
  • In this study, the wrapper database description language and model is suggested to collect product reviews from Korean shopping malls with multi-layer structures and are built in a variety of web languages. Above all, the wrapper based web crawlers have the website structure information to bring the exact desired data. The previously suggested wrapper based web crawler can collect HTML documents and the hierarchical structure of the target documents were only 2-3 layers. However, the Korean shopping malls in the study consist of not only HTML documents but also of various web language (JavaScript, Flash, and AJAX), and have a 5-layer hierarchical structure. A web crawler should have information about the review pages in order to visit the pages without visiting any non-review pages. The proposed wrapper contains the location information of review pages. We also propose a language grammar used in describing the location information.

HTML Text Extraction Using Frequency Analysis (빈도 분석을 이용한 HTML 텍스트 추출)

  • Kim, Jin-Hwan;Kim, Eun-Gyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1135-1143
    • /
    • 2021
  • Recently, text collection using a web crawler for big data analysis has been frequently performed. However, in order to collect only the necessary text from a web page that is complexly composed of numerous tags and texts, there is a cumbersome requirement to specify HTML tags and style attributes that contain the text required for big data analysis in the web crawler. In this paper, we proposed a method of extracting text using the frequency of text appearing in web pages without specifying HTML tags and style attributes. In the proposed method, the text was extracted from the DOM tree of all collected web pages, the frequency of appearance of the text was analyzed, and the main text was extracted by excluding the text with high frequency of appearance. Through this study, the superiority of the proposed method was verified.

Multi-dimensional Analysis and Prediction Model for Tourist Satisfaction

  • Shrestha, Deepanjal;Wenan, Tan;Gaudel, Bijay;Rajkarnikar, Neesha;Jeong, Seung Ryul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.480-502
    • /
    • 2022
  • This work assesses the degree of satisfaction tourists receive as final recipients in a tourism destination based on the fact that satisfied tourists can make a significant contribution to the growth and continuous improvement of a tourism business. The work considers Pokhara, the tourism capital of Nepal as a prefecture of study. A stratified sampling methodology with open-ended survey questions is used as a primary source of data for a sample size of 1019 for both international and domestic tourists. The data collected through a survey is processed using a data mining tool to perform multi-dimensional analysis to discover information patterns and visualize clusters. Further, supervised machine learning algorithms, kNN, Decision tree, Support vector machine, Random forest, Neural network, Naive Bayes, and Gradient boost are used to develop models for training and prediction purposes for the survey data. To find the best model for prediction purposes, different performance matrices are used to evaluate a model for performance, accuracy, and robustness. The best model is used in constructing a learning-enabled model for predicting tourists as satisfied, neutral, and unsatisfied visitors. This work is very important for tourism business personnel, government agencies, and tourism stakeholders to find information on tourist satisfaction and factors that influence it. Though this work was carried out for Pokhara city of Nepal, the study is equally relevant to any other tourism destination of similar nature.

Development of a Model for Calculating the Negligence Ratio Using Traffic Accident Information (교통사고 정보를 이용한 과실비율 산정 모델 개발)

  • Eum Han;Giok Park;Heejin Kang;Yoseph Lee;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.36-56
    • /
    • 2022
  • Traffic accidents occur in Korea are calculated with the 「Automobile Accident Negligence Ratio Certification Standard」 prepared by the 'General Insurance Association of Korea' and the insurance company's agreement or judgment is made. However, disputes are frequently occurring in calculating the negligence ratio. Therefore, it is thought that a more effective response would be possible if accident type according to the standard could be quickly identified using traffic accident information prepared by police. Therefore, this study aims to develop a model that learns the accident information prepared by the police and classifies it to match the accident type in the standard. In particular, through data mining, keywords necessary to classify the accident types of the standard were extracted from the accident data of the police. Then, models were developed to derive the types of accidents by learning the extracted keywords through decision trees and random forest models.

Sentiment Analysis for COVID-19 Vaccine Popularity

  • Muhammad Saeed;Naeem Ahmed;Abid Mehmood;Muhammad Aftab;Rashid Amin;Shahid Kamal
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1377-1393
    • /
    • 2023
  • Social media is used for various purposes including entertainment, communication, information search, and voicing their thoughts and concerns about a service, product, or issue. The social media data can be used for information mining and getting insights from it. The World Health Organization has listed COVID-19 as a global epidemic since 2020. People from every aspect of life as well as the entire health system have been severely impacted by this pandemic. Even now, after almost three years of the pandemic declaration, the fear caused by the COVID-19 virus leading to higher depression, stress, and anxiety levels has not been fully overcome. This has also triggered numerous kinds of discussions covering various aspects of the pandemic on the social media platforms. Among these aspects is the part focused on vaccines developed by different countries, their features and the advantages and disadvantages associated with each vaccine. Social media users often share their thoughts about vaccinations and vaccines. This data can be used to determine the popularity levels of vaccines, which can provide the producers with some insight for future decision making about their product. In this article, we used Twitter data for the vaccine popularity detection. We gathered data by scraping tweets about various vaccines from different countries. After that, various machine learning and deep learning models, i.e., naive bayes, decision tree, support vector machines, k-nearest neighbor, and deep neural network are used for sentiment analysis to determine the popularity of each vaccine. The results of experiments show that the proposed deep neural network model outperforms the other models by achieving 97.87% accuracy.

Classifying Social Media Users' Stance: Exploring Diverse Feature Sets Using Machine Learning Algorithms

  • Kashif Ayyub;Muhammad Wasif Nisar;Ehsan Ullah Munir;Muhammad Ramzan
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.79-88
    • /
    • 2024
  • The use of the social media has become part of our daily life activities. The social web channels provide the content generation facility to its users who can share their views, opinions and experiences towards certain topics. The researchers are using the social media content for various research areas. Sentiment analysis, one of the most active research areas in last decade, is the process to extract reviews, opinions and sentiments of people. Sentiment analysis is applied in diverse sub-areas such as subjectivity analysis, polarity detection, and emotion detection. Stance classification has emerged as a new and interesting research area as it aims to determine whether the content writer is in favor, against or neutral towards the target topic or issue. Stance classification is significant as it has many research applications like rumor stance classifications, stance classification towards public forums, claim stance classification, neural attention stance classification, online debate stance classification, dialogic properties stance classification etc. This research study explores different feature sets such as lexical, sentiment-specific, dialog-based which have been extracted using the standard datasets in the relevant area. Supervised learning approaches of generative algorithms such as Naïve Bayes and discriminative machine learning algorithms such as Support Vector Machine, Naïve Bayes, Decision Tree and k-Nearest Neighbor have been applied and then ensemble-based algorithms like Random Forest and AdaBoost have been applied. The empirical based results have been evaluated using the standard performance measures of Accuracy, Precision, Recall, and F-measures.

Development of Needs Extraction Algorithm Fitting for Individuals in Care Management for the Elderly in Home (재가노인 사례관리의 욕구사정 정확도 향상을 위한 욕구추출 알고리즘 개발 - 데이터 마이닝 분석기법을 활용하여 -)

  • Kim, Young-Sook;Jung, Kook-In;Park, So-Rah
    • Korean Journal of Social Welfare
    • /
    • v.60 no.1
    • /
    • pp.187-209
    • /
    • 2008
  • The authors developed 28 needs assessment tools for integrated assessment centered on needs, which is the core element in care management for the elderly in home. Also, the authors collected the assessment data of 676 elderly persons in home from 120 centers under the Korea Association of Senior Welfare Centers by using the needs assessment tools, and finally developed needs extraction algorithm through decision tree analysis in data mining to identify their actual needs and provide social welfare service suitable for such needs. The needs extraction algorithm for 28 needs of the elderly in home are summarized in

    . The Need No. 8 "Having need of help in going out" of the decision-making model, for example, was divided into 80.3% of asking for help and 11.4% not asking for help with Appeal No. 23 as a major variable. The need increased by 87.9% when the elderly appealed for help to go out and they had a caregiver but decreased by 47.4% when they had no caregiver. When the elderly asked for help in going out, they had a caregiver, and they needed complete help in cleaning, their need of help in going out was shown as 94.2%. However, seen from their answer that they needed complete help in bathing of ADL even if they did not ask for help in going out, it was found that the need of help in going out sharply increased from 11.4% to 80.0%. On the other hand, when they needed partial help or self-supported in bathing, the potential for them to be classified as asking for help in going out was shown to be low as 7.7%. In the said decision-making model, the number of cases for parent node and child node was designated as 50 and 25, respectively, with level 5 of the maximum tree depth as stopping rule. By this, it was shown that their decision-making was found to be effective as 182.13% for the need "Having need of help in going out". The algorithm presented in this study can be useful as systematic and scientific fundamental data in assessment of needs of the elderly in home.

  • PDF
  • Development and application of prediction model of hyperlipidemia using SVM and meta-learning algorithm (SVM과 meta-learning algorithm을 이용한 고지혈증 유병 예측모형 개발과 활용)

    • Lee, Seulki;Shin, Taeksoo
      • Journal of Intelligence and Information Systems
      • /
      • v.24 no.2
      • /
      • pp.111-124
      • /
      • 2018
    • This study aims to develop a classification model for predicting the occurrence of hyperlipidemia, one of the chronic diseases. Prior studies applying data mining techniques for predicting disease can be classified into a model design study for predicting cardiovascular disease and a study comparing disease prediction research results. In the case of foreign literatures, studies predicting cardiovascular disease were predominant in predicting disease using data mining techniques. Although domestic studies were not much different from those of foreign countries, studies focusing on hypertension and diabetes were mainly conducted. Since hypertension and diabetes as well as chronic diseases, hyperlipidemia, are also of high importance, this study selected hyperlipidemia as the disease to be analyzed. We also developed a model for predicting hyperlipidemia using SVM and meta learning algorithms, which are already known to have excellent predictive power. In order to achieve the purpose of this study, we used data set from Korea Health Panel 2012. The Korean Health Panel produces basic data on the level of health expenditure, health level and health behavior, and has conducted an annual survey since 2008. In this study, 1,088 patients with hyperlipidemia were randomly selected from the hospitalized, outpatient, emergency, and chronic disease data of the Korean Health Panel in 2012, and 1,088 nonpatients were also randomly extracted. A total of 2,176 people were selected for the study. Three methods were used to select input variables for predicting hyperlipidemia. First, stepwise method was performed using logistic regression. Among the 17 variables, the categorical variables(except for length of smoking) are expressed as dummy variables, which are assumed to be separate variables on the basis of the reference group, and these variables were analyzed. Six variables (age, BMI, education level, marital status, smoking status, gender) excluding income level and smoking period were selected based on significance level 0.1. Second, C4.5 as a decision tree algorithm is used. The significant input variables were age, smoking status, and education level. Finally, C4.5 as a decision tree algorithm is used. In SVM, the input variables selected by genetic algorithms consisted of 6 variables such as age, marital status, education level, economic activity, smoking period, and physical activity status, and the input variables selected by genetic algorithms in artificial neural network consist of 3 variables such as age, marital status, and education level. Based on the selected parameters, we compared SVM, meta learning algorithm and other prediction models for hyperlipidemia patients, and compared the classification performances using TP rate and precision. The main results of the analysis are as follows. First, the accuracy of the SVM was 88.4% and the accuracy of the artificial neural network was 86.7%. Second, the accuracy of classification models using the selected input variables through stepwise method was slightly higher than that of classification models using the whole variables. Third, the precision of artificial neural network was higher than that of SVM when only three variables as input variables were selected by decision trees. As a result of classification models based on the input variables selected through the genetic algorithm, classification accuracy of SVM was 88.5% and that of artificial neural network was 87.9%. Finally, this study indicated that stacking as the meta learning algorithm proposed in this study, has the best performance when it uses the predicted outputs of SVM and MLP as input variables of SVM, which is a meta classifier. The purpose of this study was to predict hyperlipidemia, one of the representative chronic diseases. To do this, we used SVM and meta-learning algorithms, which is known to have high accuracy. As a result, the accuracy of classification of hyperlipidemia in the stacking as a meta learner was higher than other meta-learning algorithms. However, the predictive performance of the meta-learning algorithm proposed in this study is the same as that of SVM with the best performance (88.6%) among the single models. The limitations of this study are as follows. First, various variable selection methods were tried, but most variables used in the study were categorical dummy variables. In the case with a large number of categorical variables, the results may be different if continuous variables are used because the model can be better suited to categorical variables such as decision trees than general models such as neural networks. Despite these limitations, this study has significance in predicting hyperlipidemia with hybrid models such as met learning algorithms which have not been studied previously. It can be said that the result of improving the model accuracy by applying various variable selection techniques is meaningful. In addition, it is expected that our proposed model will be effective for the prevention and management of hyperlipidemia.

    A Literature Review and Classification of Recommender Systems on Academic Journals (추천시스템관련 학술논문 분석 및 분류)

    • Park, Deuk-Hee;Kim, Hyea-Kyeong;Choi, Il-Young;Kim, Jae-Kyeong
      • Journal of Intelligence and Information Systems
      • /
      • v.17 no.1
      • /
      • pp.139-152
      • /
      • 2011
    • Recommender systems have become an important research field since the emergence of the first paper on collaborative filtering in the mid-1990s. In general, recommender systems are defined as the supporting systems which help users to find information, products, or services (such as books, movies, music, digital products, web sites, and TV programs) by aggregating and analyzing suggestions from other users, which mean reviews from various authorities, and user attributes. However, as academic researches on recommender systems have increased significantly over the last ten years, more researches are required to be applicable in the real world situation. Because research field on recommender systems is still wide and less mature than other research fields. Accordingly, the existing articles on recommender systems need to be reviewed toward the next generation of recommender systems. However, it would be not easy to confine the recommender system researches to specific disciplines, considering the nature of the recommender system researches. So, we reviewed all articles on recommender systems from 37 journals which were published from 2001 to 2010. The 37 journals are selected from top 125 journals of the MIS Journal Rankings. Also, the literature search was based on the descriptors "Recommender system", "Recommendation system", "Personalization system", "Collaborative filtering" and "Contents filtering". The full text of each article was reviewed to eliminate the article that was not actually related to recommender systems. Many of articles were excluded because the articles such as Conference papers, master's and doctoral dissertations, textbook, unpublished working papers, non-English publication papers and news were unfit for our research. We classified articles by year of publication, journals, recommendation fields, and data mining techniques. The recommendation fields and data mining techniques of 187 articles are reviewed and classified into eight recommendation fields (book, document, image, movie, music, shopping, TV program, and others) and eight data mining techniques (association rule, clustering, decision tree, k-nearest neighbor, link analysis, neural network, regression, and other heuristic methods). The results represented in this paper have several significant implications. First, based on previous publication rates, the interest in the recommender system related research will grow significantly in the future. Second, 49 articles are related to movie recommendation whereas image and TV program recommendation are identified in only 6 articles. This result has been caused by the easy use of MovieLens data set. So, it is necessary to prepare data set of other fields. Third, recently social network analysis has been used in the various applications. However studies on recommender systems using social network analysis are deficient. Henceforth, we expect that new recommendation approaches using social network analysis will be developed in the recommender systems. So, it will be an interesting and further research area to evaluate the recommendation system researches using social method analysis. This result provides trend of recommender system researches by examining the published literature, and provides practitioners and researchers with insight and future direction on recommender systems. We hope that this research helps anyone who is interested in recommender systems research to gain insight for future research.

    A Study on the Revitalization of Tourism Industry through Big Data Analysis (한국관광 실태조사 빅 데이터 분석을 통한 관광산업 활성화 방안 연구)

    • Lee, Jungmi;Liu, Meina;Lim, Gyoo Gun
      • Journal of Intelligence and Information Systems
      • /
      • v.24 no.2
      • /
      • pp.149-169
      • /
      • 2018
    • Korea is currently accumulating a large amount of data in public institutions based on the public data open policy and the "Government 3.0". Especially, a lot of data is accumulated in the tourism field. However, the academic discussions utilizing the tourism data are still limited. Moreover, the openness of the data of restaurants, hotels, and online tourism information, and how to use SNS Big Data in tourism are still limited. Therefore, utilization through tourism big data analysis is still low. In this paper, we tried to analyze influencing factors on foreign tourists' satisfaction in Korea through numerical data using data mining technique and R programming technique. In this study, we tried to find ways to revitalize the tourism industry by analyzing about 36,000 big data of the "Survey on the actual situation of foreign tourists from 2013 to 2015" surveyed by the Korea Culture & Tourism Research Institute. To do this, we analyzed the factors that have high influence on the 'Satisfaction', 'Revisit intention', and 'Recommendation' variables of foreign tourists. Furthermore, we analyzed the practical influences of the variables that are mentioned above. As a procedure of this study, we first integrated survey data of foreign tourists conducted by Korea Culture & Tourism Research Institute, which is stored in the tourist information system from 2013 to 2015, and eliminate unnecessary variables that are inconsistent with the research purpose among the integrated data. Some variables were modified to improve the accuracy of the analysis. And we analyzed the factors affecting the dependent variables by using data-mining methods: decision tree(C5.0, CART, CHAID, QUEST), artificial neural network, and logistic regression analysis of SPSS IBM Modeler 16.0. The seven variables that have the greatest effect on each dependent variable were derived. As a result of data analysis, it was found that seven major variables influencing 'overall satisfaction' were sightseeing spot attraction, food satisfaction, accommodation satisfaction, traffic satisfaction, guide service satisfaction, number of visiting places, and country. Variables that had a great influence appeared food satisfaction and sightseeing spot attraction. The seven variables that had the greatest influence on 'revisit intention' were the country, travel motivation, activity, food satisfaction, best activity, guide service satisfaction and sightseeing spot attraction. The most influential variables were food satisfaction and travel motivation for Korean style. Lastly, the seven variables that have the greatest influence on the 'recommendation intention' were the country, sightseeing spot attraction, number of visiting places, food satisfaction, activity, tour guide service satisfaction and cost. And then the variables that had the greatest influence were the country, sightseeing spot attraction, and food satisfaction. In addition, in order to grasp the influence of each independent variables more deeply, we used R programming to identify the influence of independent variables. As a result, it was found that the food satisfaction and sightseeing spot attraction were higher than other variables in overall satisfaction and had a greater effect than other influential variables. Revisit intention had a higher ${\beta}$ value in the travel motive as the purpose of Korean Wave than other variables. It will be necessary to have a policy that will lead to a substantial revisit of tourists by enhancing tourist attractions for the purpose of Korean Wave. Lastly, the recommendation had the same result of satisfaction as the sightseeing spot attraction and food satisfaction have higher ${\beta}$ value than other variables. From this analysis, we found that 'food satisfaction' and 'sightseeing spot attraction' variables were the common factors to influence three dependent variables that are mentioned above('Overall satisfaction', 'Revisit intention' and 'Recommendation'), and that those factors affected the satisfaction of travel in Korea significantly. The purpose of this study is to examine how to activate foreign tourists in Korea through big data analysis. It is expected to be used as basic data for analyzing tourism data and establishing effective tourism policy. It is expected to be used as a material to establish an activation plan that can contribute to tourism development in Korea in the future.


    (34141) Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon
    Copyright (C) KISTI. All Rights Reserved.