• Title/Summary/Keyword: Tree mining

Search Result 566, Processing Time 0.025 seconds

Development of Sentiment Analysis Model for the hot topic detection of online stock forums (온라인 주식 포럼의 핫토픽 탐지를 위한 감성분석 모형의 개발)

  • Hong, Taeho;Lee, Taewon;Li, Jingjing
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.187-204
    • /
    • 2016
  • Document classification based on emotional polarity has become a welcomed emerging task owing to the great explosion of data on the Web. In the big data age, there are too many information sources to refer to when making decisions. For example, when considering travel to a city, a person may search reviews from a search engine such as Google or social networking services (SNSs) such as blogs, Twitter, and Facebook. The emotional polarity of positive and negative reviews helps a user decide on whether or not to make a trip. Sentiment analysis of customer reviews has become an important research topic as datamining technology is widely accepted for text mining of the Web. Sentiment analysis has been used to classify documents through machine learning techniques, such as the decision tree, neural networks, and support vector machines (SVMs). is used to determine the attitude, position, and sensibility of people who write articles about various topics that are published on the Web. Regardless of the polarity of customer reviews, emotional reviews are very helpful materials for analyzing the opinions of customers through their reviews. Sentiment analysis helps with understanding what customers really want instantly through the help of automated text mining techniques. Sensitivity analysis utilizes text mining techniques on text on the Web to extract subjective information in the text for text analysis. Sensitivity analysis is utilized to determine the attitudes or positions of the person who wrote the article and presented their opinion about a particular topic. In this study, we developed a model that selects a hot topic from user posts at China's online stock forum by using the k-means algorithm and self-organizing map (SOM). In addition, we developed a detecting model to predict a hot topic by using machine learning techniques such as logit, the decision tree, and SVM. We employed sensitivity analysis to develop our model for the selection and detection of hot topics from China's online stock forum. The sensitivity analysis calculates a sentimental value from a document based on contrast and classification according to the polarity sentimental dictionary (positive or negative). The online stock forum was an attractive site because of its information about stock investment. Users post numerous texts about stock movement by analyzing the market according to government policy announcements, market reports, reports from research institutes on the economy, and even rumors. We divided the online forum's topics into 21 categories to utilize sentiment analysis. One hundred forty-four topics were selected among 21 categories at online forums about stock. The posts were crawled to build a positive and negative text database. We ultimately obtained 21,141 posts on 88 topics by preprocessing the text from March 2013 to February 2015. The interest index was defined to select the hot topics, and the k-means algorithm and SOM presented equivalent results with this data. We developed a decision tree model to detect hot topics with three algorithms: CHAID, CART, and C4.5. The results of CHAID were subpar compared to the others. We also employed SVM to detect the hot topics from negative data. The SVM models were trained with the radial basis function (RBF) kernel function by a grid search to detect the hot topics. The detection of hot topics by using sentiment analysis provides the latest trends and hot topics in the stock forum for investors so that they no longer need to search the vast amounts of information on the Web. Our proposed model is also helpful to rapidly determine customers' signals or attitudes towards government policy and firms' products and services.

A Case Study on Forecasting Inbound Calls of Motor Insurance Company Using Interactive Data Mining Technique (대화식 데이터 마이닝 기법을 활용한 자동차 보험사의 인입 콜량 예측 사례)

  • Baek, Woong;Kim, Nam-Gyu
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.99-120
    • /
    • 2010
  • Due to the wide spread of customers' frequent access of non face-to-face services, there have been many attempts to improve customer satisfaction using huge amounts of data accumulated throughnon face-to-face channels. Usually, a call center is regarded to be one of the most representative non-faced channels. Therefore, it is important that a call center has enough agents to offer high level customer satisfaction. However, managing too many agents would increase the operational costs of a call center by increasing labor costs. Therefore, predicting and calculating the appropriate size of human resources of a call center is one of the most critical success factors of call center management. For this reason, most call centers are currently establishing a department of WFM(Work Force Management) to estimate the appropriate number of agents and to direct much effort to predict the volume of inbound calls. In real world applications, inbound call prediction is usually performed based on the intuition and experience of a domain expert. In other words, a domain expert usually predicts the volume of calls by calculating the average call of some periods and adjusting the average according tohis/her subjective estimation. However, this kind of approach has radical limitations in that the result of prediction might be strongly affected by the expert's personal experience and competence. It is often the case that a domain expert may predict inbound calls quite differently from anotherif the two experts have mutually different opinions on selecting influential variables and priorities among the variables. Moreover, it is almost impossible to logically clarify the process of expert's subjective prediction. Currently, to overcome the limitations of subjective call prediction, most call centers are adopting a WFMS(Workforce Management System) package in which expert's best practices are systemized. With WFMS, a user can predict the volume of calls by calculating the average call of each day of the week, excluding some eventful days. However, WFMS costs too much capital during the early stage of system establishment. Moreover, it is hard to reflect new information ontothe system when some factors affecting the amount of calls have been changed. In this paper, we attempt to devise a new model for predicting inbound calls that is not only based on theoretical background but also easily applicable to real world applications. Our model was mainly developed by the interactive decision tree technique, one of the most popular techniques in data mining. Therefore, we expect that our model can predict inbound calls automatically based on historical data, and it can utilize expert's domain knowledge during the process of tree construction. To analyze the accuracy of our model, we performed intensive experiments on a real case of one of the largest car insurance companies in Korea. In the case study, the prediction accuracy of the devised two models and traditional WFMS are analyzed with respect to the various error rates allowable. The experiments reveal that our data mining-based two models outperform WFMS in terms of predicting the amount of accident calls and fault calls in most experimental situations examined.

Exploring Sport Consumption Style of Generation Z that the 4th Industrial revolution paid attention to: Applying Decision Tree Analysis based on Data Mining (4차 산업혁명이 주목한 Z세대의 스포츠 소비 스타일 탐색: 데이터마이닝 기반 의사결정 나무 분석 적용)

  • Shin, Jin-Ho;Lim, Young-Sam;Kim, Ji-Sun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.1208-1221
    • /
    • 2020
  • The purpose of this study was to provide basic data for predicting the sports consumption market that Generation Z will lead by applying data mining based decision tree analysis to explore Generation Z sports consumption style. Therefore, the survey was conducted by selecting males and females aged 19 or older as a sample among Generation Z, and data of 429 people were used for the final analysis. For data processing, frequency analysis, exploratory factor analysis, retest and reliability analysis, and decision tree analysis were performed using the SPSS statistics (ver. 21.0) program. The main results of this study are as follows. First, if the rational efficiency index is high and the aesthetic consumption index is low, the probability of being classified as a group of female was 96.8%. On the other hand, if the rational efficiency and perception of price index were low, the probability of being classified as a male group was 100%. Second, if the brand orientation, perception of price, and rational efficiency index were high, the probability of being classified as a capital area group was 97.3%. Contrary to the results presented above, the probability of being classified as a other area group was 82.1% when the brand orientation, commemoration rites, and status symbol index were low. Third, the status symbol and trend oriented index were high, and if the functionality index was low, the probability of being classified into daily life and fashion groups was 77.6%. On the contrary, if the status symbol index is low, the retention of membership and enjoy consumption index is high, the probability of being classified into exercise and competition groups was 81.0%.

Comparison of cardiac arrests from sport & leisure activities with patients returning of spontaneous circulation using Answer Tree analysis (의사결정나무분석에 의한 스포츠 레저활동 심정지군과 자발순환 회복군의 비교)

  • Park, Sang-Kyu;Uhm, Tai-Hwan
    • The Korean Journal of Emergency Medical Services
    • /
    • v.15 no.3
    • /
    • pp.57-70
    • /
    • 2011
  • Purpose : The purpose of this study was to reveal some factors of ROSC & survival for cardiac arrests from sport & leisure activities(CASLs). Methods : A retrospective study of the 1,341 out of hospital cardiac arrests(OHCAs) treated by EMS in Gyeonggi Provincial Fire and Disaster Headquarters from January to December in 2008 was conducted. The primary end-point was admission to emergency room. To clarify the factors through comparison of CASLs(n=58) with ROSCs & survivals(n=58), Answer Tree analysis for data mining with the CHAID algorithm was performed and alpha was set at .05. Mean, median, and percentile of time intervals, distances, and age on the 58 CASLs, 75 ROSCs, and 27 survivals(patients admitted to emergency room) were analysed. Results : Fourteen CASLs(24.1%), 41 ROSCs(54.7%), 16 survivals(59.3%) were treated with CPR within 5 min., and only 2 CASLs(3.4%), 11 ROSCs(14.7%), 10 survivals(37.0%) were treated with defilbrillation within 10 min. from arrest. If time recording from arrest to defilbrillation, the patients were classified 81.0%($X^2=9.83$, p=.005) into ROSCs & survivals. And the patients with no history, 100.0%($X^2=5.44$, p=.020). The other patients with no intention, 87.5%($X^2=7.00$, p=.024). Whereas the other patients with intention, treated with CPR after 4 min. from arrest were classified 67.2%($X^2=3.99$, p=.046) into CASLs. Conclusion : CPR within 4 minutes was the most important factor that discriminates between CASLs and ROSCs & survivals to record cardiac arrests-defilbrillation time. CPR within 4 min. from arrest, no history, and no intention were factors for improved ROSC & survival.

Using rough set to develop the optimization strategy of evolving time-division trading in the futures market (러프집합을 활용한 캔들스틱 트레이딩 최적화 전략)

  • Kim, Hyun-Ho;Oh, Kyong-Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.5
    • /
    • pp.881-893
    • /
    • 2012
  • This paper proposes to develop system trading strategy using rough set, decision tree in futures market. While there is a great deal of literature about the analysis of data mining, there is relatively little work on developing trading strategies in futures markets. There are three objectives in this paper. The first objective is to analysis performance of decision tree in rule-based system trading. The second objective is to find proper profitable trading interval. The last objective is to find optimized training period of trading rule training. The results of this study show that proposed model is useful trading strategy in foreign exchange market and can be desirable solution which gives lots of investors an important investment information.

Self Introduction Essay Classification Using Doc2Vec for Efficient Job Matching (Doc2Vec 모형에 기반한 자기소개서 분류 모형 구축 및 실험)

  • Kim, Young Soo;Moon, Hyun Sil;Kim, Jae Kyeong
    • Journal of Information Technology Services
    • /
    • v.19 no.1
    • /
    • pp.103-112
    • /
    • 2020
  • Job seekers are making various efforts to find a good company and companies attempt to recruit good people. Job search activities through self-introduction essay are nowadays one of the most active processes. Companies spend time and cost to reviewing all of the numerous self-introduction essays of job seekers. Job seekers are also worried about the possibility of acceptance of their self-introduction essays by companies. This research builds a classification model and conducted an experiments to classify self-introduction essays into pass or fail using deep learning and decision tree techniques. Real world data were classified using stratified sampling to alleviate the data imbalance problem between passed self-introduction essays and failed essays. Documents were embedded using Doc2Vec method developed from existing Word2Vec, and they were classified using logistic regression analysis. The decision tree model was chosen as a benchmark model, and K-fold cross-validation was conducted for the performance evaluation. As a result of several experiments, the area under curve (AUC) value of PV-DM results better than that of other models of Doc2Vec, i.e., PV-DBOW and Concatenate. Furthmore PV-DM classifies passed essays as well as failed essays, while PV_DBOW can not classify passed essays even though it classifies well failed essays. In addition, the classification performance of the logistic regression model embedded using the PV-DM model is better than the decision tree-based classification model. The implication of the experimental results is that company can reduce the cost of recruiting good d job seekers. In addition, our suggested model can help job candidates for pre-evaluating their self-introduction essays.

Comparisons of the Accuracy of Classification Methods in Sasang Constitution Diagnosis with Pulse Waves (맥파를 이용한 사상체질의 진단에 있어서 분류방법에 따른 진단의 정확도 비교)

  • Shin, Sang-Hoon;Kim, Jong-Yeol
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.10
    • /
    • pp.249-257
    • /
    • 2009
  • The purpose of this study is to find a classification method with high accuracy in regard with sasang constitutional diagnosis. The BMI, blood pressure, pulse wave, and Sasang constitution diagnosed by a specialist was collected from 2848 subjects who were apparently healthy. Through a selective procedure, the data of 1635 subjects was used in the analysis. The results with the classification methods such as the discriminant analysis, regression, decision tree and neural network were compared with the diagnosis of a Sasang constitutional specialist. In result, the discriminant analysis method was hard to qualify the assumption of the equality of covariance matrices within constitutional groups. Moreover, without BMI, the decision tree and neural network methods were very sensitive to the change of the analysis data. Therefore, the Logistic regression and the decision tree is recommended on condition that the decisive factors of constitution are well concerned.

OLAP and Decision Tree Analysis of Productivity Affected by Construction Duration Impact Factors (공사기간 영향요인에 따른 생산성의 OLAP 분석과 의사결정트리 분석)

  • Ryu, Han-Guk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.2
    • /
    • pp.100-107
    • /
    • 2011
  • As construction duration significantly influences the performance and the success of construction projects, it is necessary to appropriately manage the impact factors affecting construction duration. Recently, interest in the construction industry has been rising due to the recent change in the construction legal system, and the competition among the construction companies on construction time. However, the impact factors are extremely diverse. The existing productivity data on impact factors is not sufficient to properly identify the impact factor and measure the productivity from various perspectives, such as subcontractor, time, crew, work and so on. In this respect, a multidimensional analysis by a data warehouse is very helpful in order to view the manner in which productivity is affected by impact factors from various perspectives. Therefore, this research proposes a method that effectively takes the diverse productivity data of impact factors, and generates a multidimensional analysis. Decision tree analysis, a data mining technique, is also applied in this research in order to supply construction managers with appropriate productivity data on impact factors during the construction management process.

Discovering Frequent Itemsets Reflected User Characteristics Using Weighted Batch based on Data Stream (스트림 데이터 환경에서 배치 가중치를 이용하여 사용자 특성을 반영한 빈발항목 집합 탐사)

  • Seo, Bok-Il;Kim, Jae-In;Hwang, Bu-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.1
    • /
    • pp.56-64
    • /
    • 2011
  • It is difficult to discover frequent itemsets based on whole data from data stream since data stream has the characteristics of infinity and continuity. Therefore, a specialized data mining method, which reflects the properties of data and the requirement of users, is required. In this paper, we propose the method of FIMWB discovering the frequent itemsets which are reflecting the property that the recent events are more important than old events. Data stream is splitted into batches according to the given time interval. Our method gives a weighted value to each batch. It reflects user's interestedness for recent events. FP-Digraph discovers the frequent itemsets by using the result of FIMWB. Experimental result shows that FIMWB can reduce the generation of useless items and FP-Digraph method shows that it is suitable for real-time environment in comparison to a method based on a tree(FP-Tree).

Robust Feature Selection and Shot Change Detection Method Using the Neural Networks (강인한 특징 변수 선별과 신경망을 이용한 장면 전환점 검출 기법)

  • Hong, Seung-Bum;Hong, Gyo-Young
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.7
    • /
    • pp.877-885
    • /
    • 2004
  • In this paper, we propose an enhancement shot change detection method using the neural net and the robust feature selection out of multiple features. The previous shot change detection methods usually used single feature and fixed threshold between consecutive frames. However, contents such as color, shape, background, and texture change simultaneously at shot change points in a video sequence. Therefore, in this paper, we detect the shot changes effectively using robust features, which are supplementary each other, rather than using single feature. In this paper, we use the typical CART (classification and regression tree) of data mining method to select the robust features, and the backpropagation neural net to determine the threshold of the each selected features. And to evaluation the performance of the robust feature selection, we compare the proposed method to the PCA(principal component analysis) method of the typical feature selection. According to the experimental result. it was revealed that the performance of our method had better that than the PCA method.

  • PDF