• Title/Summary/Keyword: Tree mining

Search Result 566, Processing Time 0.03 seconds

Market Segmentation of Patient-Utilization in Oriental Medical Care and Western Medical Care (양.한방 의료서비스 이용환자의 시장 세분화에 관한 연구)

  • 이선희;조희숙;최은영;최귀선;채유미
    • Health Policy and Management
    • /
    • v.12 no.1
    • /
    • pp.125-143
    • /
    • 2002
  • The objectives of this study were analysis of patient\`s characteristics and market segmentation in oriental medical care and western medical care. This study focused on medical utilization using Anderson's health utilization model. The source of data was 1998 National Health and Nutrition Survey which Korean Institute For Health and Social Affairs carried out. A stratified multistage probability sampling design was used in this survey. The analysis was conducted using the statistical software package SPSS version 10.0 and Answer Tree 2.1 which is one of data mining methodology. The results were as follows ; 1) 44.9% of respondents reported visiting oriental medical center within recent two weeks. 3.4% of them used oriental medical care. The group of age, kind of disease and medical expenditure are associated with the difference western and oriental medical utilization rate. 2) There were several factors related to utilization of oriental medical care according to decision tree. Especially, important factors that patient chose his medical center were kinds of disease, kinds of common medical use, and expenditure. 3) in the results of CART analysis, market of oriental medical care were classified by seven categories. The major groups who have a preference for oriental medicine were those musculo-skeletal, cerebra-vascular disease, or chronic headache patients, and they had a preference fur oriental medical care in common use. These results show that oriental and western medical market were divided into various areas by market segmentation.

Development of Coil Breakage Prediction Model In Cold Rolling Mill

  • Park, Yeong-Bok;Hwang, Hwa-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1343-1346
    • /
    • 2005
  • In the cold rolling mill, coil breakage that generated in rolling process makes the various types of troubles such as the degradation of productivity and the damage of equipment. Recent researches were done by the mechanical analysis such as the analysis of roll chattering or strip inclining and the prevention of breakage that detects the crack of coil. But they could cover some kind of breakages. The prediction of Coil breakage was very complicated and occurred rarely. We propose to build effective prediction modes for coil breakage in rolling process, based on data mining model. We proposed three prediction models for coil breakage: (1) decision tree based model, (2) regression based model and (3) neural network based model. To reduce model parameters, we selected important variables related to the occurrence of coil breakage from the attributes of coil setup by using the methods such as decision tree, variable selection and the choice of domain experts. We developed these prediction models and chose the best model among them using SEMMA process that proposed in SAS E-miner environment. We estimated model accuracy by scoring the prediction model with the posterior probability. We also have developed a software tool to analyze the data and generate the proposed prediction models either automatically and in a user-driven manner. It also has an effective visualization feature that is based on PCA (Principle Component Analysis).

  • PDF

Spatial Statistic Data Release Based on Differential Privacy

  • Cai, Sujin;Lyu, Xin;Ban, Duohan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5244-5259
    • /
    • 2019
  • With the continuous development of LBS (Location Based Service) applications, privacy protection has become an urgent problem to be solved. Differential privacy technology is based on strict mathematical theory that provides strong privacy guarantees where it supposes that the attacker has the worst-case background knowledge and that knowledge has been applied to different research directions such as data query, release, and mining. The difficulty of this research is how to ensure data availability while protecting privacy. Spatial multidimensional data are usually released by partitioning the domain into disjointed subsets, then generating a hierarchical index. The traditional data-dependent partition methods need to allocate a part of the privacy budgets for the partitioning process and split the budget among all the steps, which is inefficient. To address such issues, a novel two-step partition algorithm is proposed. First, we partition the original dataset into fixed grids, inject noise and synthesize a dataset according to the noisy count. Second, we perform IH-Tree (Improved H-Tree) partition on the synthetic dataset and use the resulting partition keys to split the original dataset. The algorithm can save the privacy budget allocated to the partitioning process and obtain a more accurate release. The algorithm has been tested on three real-world datasets and compares the accuracy with the state-of-the-art algorithms. The experimental results show that the relative errors of the range query are considerably reduced, especially on the large scale dataset.

A Predictive Model using Decision Tree Method on Demand for Alternative Feeding Education by Nurses (의사결정나무분석법을 이용한 간호사의 대체수유교육요구 예측모형)

  • Oh, Jin-A;Yoon, Chae-Min;Kim, Byung-Su
    • Child Health Nursing Research
    • /
    • v.16 no.1
    • /
    • pp.84-92
    • /
    • 2010
  • Purpose: One of the main reasons why mothers quit breast feeding is that the volume of breast milk is inadequate due to insufficiency in suckling. We believe suckling experience may be a factor affecting nipple confusion. So an alternative feeding method, namely cup, spoon, finger, or nasogastric tube feeding may be needed to prevent nipple confusion. The purpose of this study was to construct a predictive model for demand for alternative feeding education by nurses. Methods: A descriptive design with structured self-report questionnaires was used for this study. Data from 175 nurses working in hospitals in Busan were collected between April 1 and 15, 2009. Data were analyzed by decision tree method, one of the data mining techniques using SAS 9.1 and Enterprise Miner 4.3 program. Results: Of the nurses, 81.1% demanded alternative feeding education and 5 factors showed that most of them expressed intention to pay, desire to know about alternative feeding, age, and learning experience. From these results, the derived model is considered appropriative for explaining and predicting demand for alternative feeding education. Conclusion: This confirms that knowledge and compliance in alternative breast feeding for newborn babies should be correct and any inaccuracies or insufficient information should be supplemented.

An application of datamining approach to CQI using the discharge summary (퇴원요약 데이터베이스를 이용한 데이터마이닝 기법의 CQI 활동에의 황용 방안)

  • 선미옥;채영문;이해종;이선희;강성홍;호승희
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.289-299
    • /
    • 2000
  • This study provides an application of datamining approach to CQI(Continuous Quality Improvement) using the discharge summary. First, we found a process variation in hospital infection rate by SPC (Statistical Process Control) technique. Second, importance of factors influencing hospital infection was inferred through the decision tree analysis which is a classification method in data-mining approach. The most important factor was surgery followed by comorbidity and length of operation. Comorbidity was further divided into age and principal diagnosis and the length of operation was further divided into age and chief complaint. 24 rules of hospital infection were generated by the decision tree analysis. Of these, 9 rules with predictive prover greater than 50% were suggested as guidelines for hospital infection control. The optimum range of target group in hospital infection control were Identified through the information gain summary. Association rule, which is another kind of datamining method, was performed to analyze the relationship between principal diagnosis and comorbidity. The confidence score, which measures the decree of association, between urinary tract infection and causal bacillus was the highest, followed by the score between postoperative wound disruption find postoperative wound infection. This study demonstrated how datamining approach could be used to provide information to support prospective surveillance of hospital infection. The datamining technique can also be applied to various areas fur CQI using other hospital databases.

  • PDF

Wireless Internet Service Classification using Data Mining (데이터 마이닝을 이용한 무선 인터넷 서비스 분류기법)

  • Lee, Seong-Jin;Song, Jong-Woo;Ahn, Soo-Han;Won, You-Jip;Chang, Jae-Sung
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.3
    • /
    • pp.153-162
    • /
    • 2009
  • It is a challenging work for service operators to accurately classify different services, which runs on various wireless networks based upon numerous platforms. This works focuses on design and implementation of a classifier, which accurately classifies applications, which are captured horn WiBro Network. Notion of session is introduced for the classifier, instead of commonly used Flow to develop a classifier. Based on session information of given traffic, two classification algorithms are presented, Classification and Regression Tree and Support Vector Machine. Both algorithms are capable of classifying accurately and effectively with misclassification rate of 0.85%, and 0.94%, respectively. This work shows that classifier using CART provides ease of interpreting the result and implementation.

Factor Analysis for Improving Adults' Internet Addiction Diagnosis (성인 인터넷 중독진단 개선을 위한 요인분석)

  • Kim, Jong-Wan;Kim, Hee-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.317-322
    • /
    • 2011
  • Korean adults' internet addiction diagnosis measure, K-scale developed by Korea National Information Society Agency (NIA), has composed of 4 categories including 20 items. This scale can diagnose user's internet addiction with individual's questionnaire items. Most of previous research works were tried to know reasons of internet addiction and to judge whether adolescents are addicted or not with their samples. In this research, it is the goal to find the key component to judge individual's internet addiction by using a decision tree in the data mining field and a principal component analysis in statistics. From the experimental results, we would discover that tolerance and preoccupation factor is the most important one to affect adult's internet addiction.

Measurement and Modeling of Job Stress of Electric Overhead Traveling Crane Operators

  • Krishna, Obilisetty B.;Maiti, Jhareswar;Ray, Pradip K.;Samanta, Biswajit;Mandal, Saptarshi;Sarkar, Sobhan
    • Safety and Health at Work
    • /
    • v.6 no.4
    • /
    • pp.279-288
    • /
    • 2015
  • Background: In this study, the measurement of job stress of electric overhead traveling crane operators and quantification of the effects of operator and workplace characteristics on job stress were assessed. Methods: Job stress was measured on five subscales: employee empowerment, role overload, role ambiguity, rule violation, and job hazard. The characteristics of the operators that were studied were age, experience, body weight, and body height. The workplace characteristics considered were hours of exposure, cabin type, cabin feature, and crane height. The proposed methodology included administration of a questionnaire survey to 76 electric overhead traveling crane operators followed by analysis using analysis of variance and a classification and regression tree. Results: The key findings were: (1) the five subscales can be used to measure job stress; (2) employee empowerment was the most significant factor followed by the role overload; (3) workplace characteristics contributed more towards job stress than operator's characteristics; and (4) of the workplace characteristics, crane height was the major contributor. Conclusion: The issues related to crane height and cabin feature can be fixed by providing engineering or foolproof solutions than relying on interventions related to the demographic factors.

Data Mining Tool for Stock Investors' Decision Support (주식 투자자의 의사결정 지원을 위한 데이터마이닝 도구)

  • Kim, Sung-Dong
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.2
    • /
    • pp.472-482
    • /
    • 2012
  • There are many investors in the stock market, and more and more people get interested in the stock investment. In order to avoid risks and make profit in the stock investment, we have to determine several aspects using various information. That is, we have to select profitable stocks and determine appropriate buying/selling prices and holding period. This paper proposes a data mining tool for the investors' decision support. The data mining tool makes stock investors apply machine learning techniques and generate stock price prediction model. Also it helps determine buying/selling prices and holding period. It supports individual investor's own decision making using past data. Using the proposed tool, users can manage stock data, generate their own stock price prediction models, and establish trading policy via investment simulation. Users can select technical indicators which they think affect future stock price. Then they can generate stock price prediction models using the indicators and test the models. They also perform investment simulation using proper models to find appropriate trading policy consisting of buying/selling prices and holding period. Using the proposed data mining tool, stock investors can expect more profit with the help of stock price prediction model and trading policy validated on past data, instead of with an emotional decision.

A Study on the Development of Flight Prediction Model and Rules for Military Aircraft Using Data Mining Techniques (데이터 마이닝 기법을 활용한 군용 항공기 비행 예측모형 및 비행규칙 도출 연구)

  • Yu, Kyoung Yul;Moon, Young Joo;Jeong, Dae Yul
    • The Journal of Information Systems
    • /
    • v.31 no.3
    • /
    • pp.177-195
    • /
    • 2022
  • Purpose This paper aims to prepare a full operational readiness by establishing an optimal flight plan considering the weather conditions in order to effectively perform the mission and operation of military aircraft. This paper suggests a flight prediction model and rules by analyzing the correlation between flight implementation and cancellation according to weather conditions by using big data collected from historical flight information of military aircraft supplied by Korean manufacturers and meteorological information from the Korea Meteorological Administration. In addition, by deriving flight rules according to weather information, it was possible to discover an efficient flight schedule establishment method in consideration of weather information. Design/methodology/approach This study is an analytic study using data mining techniques based on flight historical data of 44,558 flights of military aircraft accumulated by the Republic of Korea Air Force for a total of 36 months from January 2013 to December 2015 and meteorological information provided by the Korea Meteorological Administration. Four steps were taken to develop optimal flight prediction models and to derive rules for flight implementation and cancellation. First, a total of 10 independent variables and one dependent variable were used to develop the optimal model for flight implementation according to weather condition. Second, optimal flight prediction models were derived using algorithms such as logistics regression, Adaboost, KNN, Random forest and LightGBM, which are data mining techniques. Third, we collected the opinions of military aircraft pilots who have more than 25 years experience and evaluated importance level about independent variables using Python heatmap to develop flight implementation and cancellation rules according to weather conditions. Finally, the decision tree model was constructed, and the flight rules were derived to see how the weather conditions at each airport affect the implementation and cancellation of the flight. Findings Based on historical flight information of military aircraft and weather information of flight zone. We developed flight prediction model using data mining techniques. As a result of optimal flight prediction model development for each airbase, it was confirmed that the LightGBM algorithm had the best prediction rate in terms of recall rate. Each flight rules were checked according to the weather condition, and it was confirmed that precipitation, humidity, and the total cloud had a significant effect on flight cancellation. Whereas, the effect of visibility was found to be relatively insignificant. When a flight schedule was established, the rules will provide some insight to decide flight training more systematically and effectively.