Journal of Korea Society of Industrial Information Systems
/
v.17
no.6
/
pp.59-72
/
2012
Since a protein displays its specific functions when disorder region of protein sequence transits to order region with provoking a biological reaction, the separation of disorder region and order region from the sequence data is urgently necessary for predicting three dimensional structure and characteristics of the protein. To classify the disorder and order region efficiently, this paper proposes a classification/prediction method using sequence data while acquiring a non-biased result on a specific characteristics of protein and improving the classification speed. The emerging patterns based EPs-TFP methods utilizes only the essential emerging pattern in which the redundant emerging patterns are removed. This classification method finds the sequence patterns of disorder region, such sequence patterns are frequently shown in disorder region but relatively not frequently in the order region. We expand P-tree and T-tree conceptualized TFP method into a classification/prediction method in order to improve the performance of the proposed algorithm. We used Disprot 4.9 and CASP 7 data to evaluate EPs-TFP technique, the results of order/disorder classification show sensitivity 73.6, specificity 69.51 and accuracy 74.2.
Journal of the Korea Society of Computer and Information
/
v.28
no.4
/
pp.197-208
/
2023
In this study, we attempted to examine the changing ways of thinking about lecture evaluation before and after COVID-19. To this end, decision tree analysis(Decision Tree) was used among data mining techniques based on lecture evaluation data for liberal arts and major classes conducted before and after COVID-19 for A university. According to the results of the study, liberal arts changed from 'method' to 'content', and 'knowledge improvement' was an important factor both before and after majors. In particular, 'Assignment' was found to be an important factor after the COVID-19 in common in the evaluation of lectures in the liberal arts department, which means that in the future, professors will be provided with appropriate teaching methods during class, interaction with students, and feedback on assignments or test results, indicates the need for competence. Based on the results of this study, a plan to improve communication with students and activation of blended learning was suggested.
This study conducted an experiment using data mining techniques to develop prediction models of worker job turnover. The experiment used data from the '2015 Graduate Occupational Mobility Survey' by the Korea Employment Information Service. We developed the prediction models using a decision tree, Bayes net, and artificial neural network. We found that the decision tree-based prediction model reported the best accuracy. We also found that the six influential factors affecting employees' turnover intention are type of working time, job status, full-time or not full-time, regular working hours per week, regular working days per week, and personal development opportunities. From the decision tree-based prediction model, we derived 12 rules of employee turnover for all job types. Using the derived rules, we proposed helpful directions for enhancing workers' job tenure. In addition, we analyzed the influential factors affecting employees' job turnover intention according to four job types and derived rules for each: office (ten rules), culture and art (nine rules), construction (four rules), and information technology (six rules). Using the derived rules, we proposed customized directions for improving the job tenure for each group.
Decision trees are mainly used for the classification and prediction in data mining. The distribution of spatial data and relationships with their neighborhoods are very important when conducting classification for spatial data mining in the real world. Spatial decision trees in previous works have been designed for reflecting spatial data characteristic by rating Euclidean distance. But it only explains the distance of objects in spatial dimension so that it is hard to represent the distribution of spatial data and their relationships. This paper proposes a decision tree based on spatial entropy that represents the distribution of spatial data with the dispersion and dissimilarity. The dispersion presents the distribution of spatial objects within the belonged class. And dissimilarity indicates the distribution and its relationship with other classes. The rate of dispersion by dissimilarity presents that how related spatial distribution and classified data with non-spatial attributes we. Our experiment evaluates accuracy and building time of a decision tree as compared to previous methods. We achieve an improvement in performance by about 18%, 11%, respectively.
The purpose of this study is to develop a convergence inpatient medical service patient experience management model(IMSPEMM) that can help in the management strategy of a medical institution to create a patient-centered medical culture. Using the original data from the 2018 Medical Service Experience Survey, 593 people with medical services inpatient(MSI) over the age of 15 were analyzed. By using the decision tree model, we developed a prediction model for overall satisfaction(OS) with the inpatient medical service experience(IMSE) and the intention to recommend patient experience(RI), and were classified into 4 and 7 types. The accuracy of the model was 68.9% and 78.3%. The OS level of IMSE was the nurse area and the hospital room noise management area, and the RI decision factor was the nurse area. It is significant that the IMSPEMM for MSI was presented and confirmed that the nurse area and the noise management area of the hospital room are important factors for the inpatient experience. It is considered that further research is needed to generalize the IMSPEMM.
The purpose of this study is to establish a model for predicting academic achievement of college students and to reveal the interrelationship and relative influence of each factor. For this, we surveyed the personal factors and learning strategy factors of 1,310 learners at J University, and analyzed the discriminant factors and patterns of the predictors of academic achievement through the decision tree analysis, a data mining method, and examined the relative effects of each factor. Binary logistic regression analysis was performed for viewing. As a result, the most important factor for predicting academic achievement was efficacy, and other factors such as motivation, time management, and depression were predictive of academic achievement. The patterns of factors predicting academic achievement were found to be high in efficacy and time management, and high in motivation for learning even if the efficacy was moderate. Low efficacy and learning motivation, and high depression have been shown to decrease academic achievement. Based on these results, the study suggested the efficacy and motivation to improve academic achievement of college students, strengthening time management education, and managing negative emotions.
Park, Il-Su;Park, So-Jeong;Han, Jun-Tae;Kang, Sung-Hong
Journal of Digital Convergence
/
v.11
no.10
/
pp.593-608
/
2013
According to increasing number of injury claims, the challenge is reducing investigation of cases of injuries by selecting them more delicately, while also increasing the redemption rates and the amount of restitution. In this regards, we developed the fraud detection model for injury claims of self-employed insured by using decision tree after collecting medical claim data from 2006 to 2011 of the National Health Insurance in Korea. As a result of this model, subject types were classified into 18 types. If applying these types to the actual survey compared with if not applying, the redumption collecting rate will be increasing by 12.8%. Also, the effectiveness of this model will be maximize when the number of claims handlers considering their survey volume and management plans are examined thoroughly.
The Journal of Korean Association of Computer Education
/
v.20
no.2
/
pp.47-55
/
2017
The purpose of this study is to investigate the predicting factors on the increase in computer entertainment behavior with the sample from KYPS data. The results of the Decision Tree model revealed that: (1) Neighbor supervision, self-belief, parent attachment, life satisfaction, and peer attachment were significant for the increase in computer entertainment behavior. (2) Neighbor supervision, class participation and leisure satisfaction were significant for male students' increase in computer entertainment behavior. (3) Optimistic disposition, teacher attachment, and peer attachment were significant for female students' increase in computer entertainment behavior. These results suggest that meaningful factors and their divers interactions should be considered in methods and programs for regulating and preventing the increase in computer entertainment behavior.
Journal of the Korea Academia-Industrial cooperation Society
/
v.10
no.8
/
pp.1998-2004
/
2009
Recently, due to technical developments of various storage devices and networks, the amount of data increases rapidly. The large volume of data streams poses unique space and time constraints on the data mining process. The continuous characteristic of streaming data necessitates the use of algorithms that require only one scan over the stream for knowledge discovery. Most of the researches based on the support are concerned with the frequent itemsets, but ignore the infrequent itemsets even if it is crucial. In this paper, we propose an efficient method WSFI-Mine(Weighted Support Frequent Itemsets Mine) to mine all frequent itemsets by one scan from the data stream. This method can discover the closed frequent itemsets using DCT(Data Stream Closed Pattern Tree). We compare the performance of our algorithm with DSM-FI and THUI-Mine, under different minimum supports. As results show that WSFI-Mine not only run significant faster, but also consume less memory.
It is very important to support the elderly with disability ageing in place. Assisting devices can help them to live independently in their community; however, they have to be used appropriately to meet care needs. This study develops an assisting device recommendation system for the beneficiaries of long-term care insurance that include algorithms to decide the most appropriate type of assisting device for beneficiaries. We used long-term care (LTC) insurance data for grade assessment including 8,084 beneficiaries from July 2015 to June 2016. In addition, we collected standard care plans for assisting devices, that power-assessors made, considering their performance and ability that could subsequently be matched with grade assessment data. We used a decision-tree model in data-mining to develop the model. Finally, we developed 15 algorithms for recommending assisting devices. The findings might be useful in evidence-based care planning for assisting devices and can contribute to enhancing independence and safety in LTC.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.