• 제목/요약/키워드: Tree classifiers

검색결과 79건 처리시간 0.019초

침엽수종 분류를 위한 초분광영상과 다중분광영상의 비교 (Comparison between Hyperspectral and Multispectral Images for the Classification of Coniferous Species)

  • 조형갑;이규성
    • 대한원격탐사학회지
    • /
    • 제30권1호
    • /
    • pp.25-36
    • /
    • 2014
  • 수종 간의 유사한 분광특성 때문에 기존의 다중분광영상을 이용한 수종분류는 한계가 있다. 본 연구에서는 경기도 광릉수목원에 분포하는 다섯 종류의 침엽수림을 분류하기 위하여 초분광영상과 다중분광 영상의 적합성을 비교 분석하였다. 연구지역을 대상으로 두 종류의 항공 초분광영상(AISA, CASI)을 촬영하였으며, 비교 목적으로 초분광영상을 이용하여 모의 제작된 ETM+ 다중분광영상을 사용하였다. 영상분류에 사용된 영상은 초분광영상의 모든 밴드를 포함한 영상, PCA 및 MNF 기법으로 차원 축소된 영상, 그리고 분류등급의 분광분리도를 이용하여 소수의 밴드만을 추출한 영상이다. 또한 감독분류 과정에서 MLC, SAM, SVM 등 세 종류의 분류기를 적용하였다. 전체적으로 침엽수종의 분류에 있어서 초분광영상이 다중분광영상보다 높은 분류정확도를 제공하고 있다. 특히 중적외선 파장영역을 포함한 AISA-dual영상이 가장 좋은 분류결과를 보여주었다. 또한 많은 분광밴드를 가진 초분광영상을 MNF기법으로 차원 축소한 영상을 사용했을 때, 다른 영상보다 높은 분류결과가 나왔다. 감독 분류과정에서는 최대우도법(MLC)을 적용했을 때, 가장 높은 분류정확도를 얻었다.

판단 트리 분류를 위한 SQL 기초 기능의 구현에 관한 연구 (A Study on the Implementation of SQL Primitives for Decision Tree Classification)

  • 안형근;고재진
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권12호
    • /
    • pp.855-864
    • /
    • 2013
  • 판단 트리 분류는 데이터 마이닝의 중요한 문제의 하나이고, 데이터 마이닝은 대형 데이터베이스 기술의 중요한 과제가 되고 있다. 그러므로 데이터베이스와 데이터 마이닝 시스템의 결합 노력은 판단 트리 분류와 같은 데이터 마이닝 기능을 지원하는 데이터베이스 기초 기능의 개발로 이어지고 있다. 이런 기초 기능은 분류 알고리즘의 SQL 구현을 지원하는 특수한 데이터베이스 연산들로 구현되며, 특정 알고리즘을 구현하여 데이터베이스 시스템의 구성 모듈로 사용하고 있다. 데이터마이닝 기능을 제공하는 데이터베이스 기초 기능의 개발에는 두 가지 관점이 있다. 하나는 데이터 마이닝 기능을 분석해서 그런 기능들을 제공하는 데이터베이스 공통 기초 기능을 확인하는 것, 다른 하나는 데이터베이스 시스템의 인터페이스의 한 부분으로 이런 기초 기능의 구현을 위한 확장된 메커니즘을 제공하는 것이다. 데이터마이닝에서 어떤 기초 기능들을 DBMS에 저장할 것인가는 어려운 문제 중에 하나이다. 따라서 본 논문에서는 이러한 문제를 해결하기 위하여, 최적화된 판단 트리 분류기를 만들고 데이터베이스 기초 기능에 대해서 기술한다. 판단 트리 분류 알고리즘의 유용한 연산들을 확인하고, 상업적 DBMS에서 이러한 기초 기능의 구현에 대해서 기술하고, 성능 비교를 위한 실험 결과를 제시한다.

N-그램 증강 나이브 베이스 알고리즘과 일반화된 k-절단 서픽스트리를 이용한 확장가능하고 정확한 침입 탐지 기법 (Scalable and Accurate Intrusion Detection using n-Gram Augmented Naive Bayes and Generalized k-Truncated Suffix Tree)

  • 강대기;황기현
    • 한국정보통신학회논문지
    • /
    • 제13권4호
    • /
    • pp.805-812
    • /
    • 2009
  • 기계 학습을 응용한 많은 침입 탐지 시스템들에서 n-그램 접근 방법이 사용되고 있다. 그러나, n-그램 접근방법은 확장이 어렵고, 주어진 시퀀스에서 획득한 n-그램들이 서로 겹치는 문제들을 가지고 있다. 본 연구에서는 이러한 문제들을 해결하기 위해, 일반화된 k-절단 서픽스트리 (generalized k-truncated suffix tree; k-TST) 기반의 n-그램 증강 나이브 베이스 (n-gram augmented naive Bayes) 알고리즘을 침입 시퀀스의 분류에 적용하여 보았다. 제 안된 시스템의 성능을 평가하기 위해 n-그램 특징들을 사용하는 일반 나이브 베이스 (naive Bayes) 알고리즘과 서포트 벡터 머신(support vector machines) 알고리즘과 본 연구에서 제안한 n-그램 증강 나이브 베이스 알고리즘을 호스트 기반 침입 탐지 벤치마크 데이터와 비교하였다. 공개된 호스트 기반 침입 탐지 벤치마크 데이터인 뉴 멕시코 대학(University of New Mexico)의 벤치마크 데이터에 적용해 본 결과에 따르면, n-그램 증강 방법이, n-그램이 나이브 베이스에 직접 적용되는 경우(예: n-그램 특징을 사용하는 일반 나이브 베이스), 생기는 독립성 가정에 대한 위배의 문제도 해결하면서, 동시에 더 정확한 침입 탐지기를 생성해냄을 알 수 있었다.

유전자 알고리즘 및 국소 적응 오퍼레이션 기반의 의료 진단 문제 자동화 기법 연구 (Medical Diagnosis Problem Solving Based on the Combination of Genetic Algorithms and Local Adaptive Operations)

  • 이기광;한창희
    • 지능정보연구
    • /
    • 제14권2호
    • /
    • pp.193-206
    • /
    • 2008
  • 의료 진단 문제는 기정의된 특성치들로 표현되는 환자의 상태 데이터로부터 병의 유무를 판단하는 일종의 분류 문제로 간주할 수 있다. 본 연구는 혼용 유전자 알고리즘 기반의 분류방법을 도입함으로써 의료 진단 문제와 같은 다차원의 패턴 분류 문제를 해결할 수 있는 방안을 제안하고 있다. 일반적으로 분류 문제는 데이터 패턴에 존재하는 여러 클래스 간 구분경계를 생성하는 접근방법을 사용하는데, 이를 위해 본 연구에서는 일단의 영역 에이전트들을 도입하여 이들을 유전자 알고리즘 및 국소 적응조작을 혼용함으로써 데이터 패턴에 적응하도록 유도하고 있다. 일반적인 유전자 알고리즘의 진화단계를 거친 에이전트들에 적용되는 국소 적응조작은 영역 에이전트의 확장, 회피 및 재배치로 이루어지며, 각 에이전트의 적합도에 따라 이들 중 하나가 선택되어 해당 에이전트에 적용된다. 제안된 의료 진단용 분류 방법은 UCI 데이터베이스에 있는 잘 알려진 의료 데이터, 즉 간, 당뇨, 유방암 관련 진단 문제에 적용하여 검증하였다. 그 결과, 기존의 대표적인 분류기법인 최단거리이웃방법(the nearest neighbor), C4.5 알고리즘에 의한 의사 결정트리(decision tree) 및 신경망보다 우수한 진단 수행도를 나타내었다.

  • PDF

베이스 에러율의 상위 경계 최소화에 기반한 고차 곱 근사 방법과 숫자 인식기 결합에의 적용 (A High Order Product Approximation Method based on the Minimization of Upper Bound of a Bayes Error Rate and Its Application to the Combination of Numeral Recognizers)

  • 강희중
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제28권9호
    • /
    • pp.681-687
    • /
    • 2001
  • 다수의 인식기를 결합하여 베이지안 결정 이론 하에서 클래스 분별력을 높이려면, 훈련 데이터 샘플로부터 얻은 클래스 변수와 결정 변수들로 구성된 조건부 엔트로피에 의해서 한정되는 베이스 에러율의 상위 경계를 최소화해야 한다. Wang과 Wong은 베이스 에러율의 상위 경계를 최소화하기 위하여 클래스 변수와 다수의 특징 패턴 변수들로 구성된 고차 확률 분포를 트리 의존관계로 근사하는 1차 근사 방법을 제안하였다. 본 논문에서는 이러한 베이스 에러율의 상위 경계 최소화에 기반한 기존의 1차 트리 의존관계 근사 방법을 확장하여 고차 의존관계까지 고려할 수 있는 확장된 곱 고차 근사 방법을 제안한다. 제안된 근사 방법을 CENPARMI의 무제약 필기 숫자를 인식하는 다수의 숫자 인식기 결합 방법에 적용하여 인식 실험을 하였으며, 이 방법에 의해서 보다 높은 인식율을 얻게 되었다.

  • PDF

소프트웨어 라디오를 위한 고속 변조 인식기 (Fast Modulation Classifier for Software Radio)

  • 박철순;장원;김대영
    • 한국통신학회논문지
    • /
    • 제32권4C호
    • /
    • pp.425-432
    • /
    • 2007
  • 본 논문에서는 사전정보 없이 입사하는 신호의 변조 형태를 자동 식별하기 위해 변조타입에 대한 민감도가 우수하고, SNR에 대한 변화가 적은 속성을 가진 7개의 특징(key features)들을 선정하였다. 또한 선정된 특징들을 이용하여 총 9종의 변조 신호(아날로그와 디지털 신호 포함)를 분류하기 위한 시뮬레이션을 수행하였다. 소프트웨어 라디오의 고속 변조 인식기 탑재를 고려하여, 4 타입의 변조인식기에 대한 인식 정확도 및 수행시간을 검토하였다. 시뮬레이션 결과 인식시간은 DTC(Decision Tree Classifier)가 가장 빠르게 수행되었고, 인식정확도는 SVC(Support Vector Machine Classifier)과 MDC(Minimum Distance Classifier)가 우수하게 제시되었다. 변조 인식기의 프로토타입은 처리 속도가 가장 우수한 DTC로 구현되었다. 필드 실험 결과, 인식 성능은 DTC 시뮬레이션 결과와 일치하는 것을 확인하였다.

웨이브릿 변환을 이용한 디지털 변조타입 자동 인식 (Automatic Recognition of Digital Modulation Types using Wavelet Transformation)

  • 박철순;나선필;양종원;최준호
    • 대한전자공학회논문지TC
    • /
    • 제45권4호
    • /
    • pp.22-30
    • /
    • 2008
  • 본 논문은 웨이브릿 변환을 이용하여 사전정보 없이 입사하는 디지털 신호의 변조타입 자동식별 방법에 관한 것이다. 변조인식에 사용되는 특징(key features)은 변조타입에 대한 민감도가 우수하고, SNR에 대한 변화가 적은 속성을 가져야 한다. 잡음에 대한 변화가 적은 속성을 가진 웨이브릿 변환 계수에서 변조인식을 위해 4개의 특징(key features)을 선정하였다. 또한 선정된 특징들을 이용하여 총 8종의 디지털변조 신호를 분류하기 위해 시뮬레이션을 수행하였다. 소프트웨어 라디오의 변조인식 모듈 탑재를 고려하여, 3 타입의 변조인식기에 대한 인식 정확도 및 수행시간을 비교 분석하였다. 시뮬레이션 결과 전체 인식시간은 MDC(Minimum Distance Classifier)와 DTC(Decision Tree Classifier)가 빠르게 수행되었고, 인식정확도는 MDC와 SVMC(Support Vector Machine Classifier)가 우수하게 제시되었다.

Word2vec과 앙상블 분류기를 사용한 효율적 한국어 감성 분류 방안 (Effective Korean sentiment classification method using word2vec and ensemble classifier)

  • 박성수;이건창
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권1호
    • /
    • pp.133-140
    • /
    • 2018
  • 감성 분석에서 정확한 감성 분류는 중요한 연구 주제이다. 본 연구는 최근 많은 연구가 이루어지는 word2vec과 앙상블 방법을 이용하여 효과적으로 한국어 리뷰를 감성 분류하는 방법을 제시한다. 연구는 20 만 개의 한국 영화 리뷰 텍스트에 대해, 품사 기반 BOW 자질과 word2vec를 사용한 자질을 생성하고, 두 개의 자질 표현을 결합한 통합 자질을 생성했다. 감성 분류를 위해 Logistic Regression, Decision Tree, Naive Bayes, Support Vector Machine의 단일 분류기와 Adaptive Boost, Bagging, Gradient Boosting, Random Forest의 앙상블 분류기를 사용하였다. 연구 결과로 형용사와 부사를 포함한 BOW자질과 word2vec자질로 구성된 통합 자질 표현이 가장 높은 감성 분류 정확도를 보였다. 실증결과, 단일 분류기인 SVM이 가장 높은 성능을 나타내었지만, 앙상블 분류기는 단일 분류기와 비슷하거나 약간 낮은 성능을 보였다.

유전자 알고리즘을 활용한 데이터 불균형 해소 기법의 조합적 활용

  • 장영식;김종우;허준
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2007년도 한국지능정보시스템학회
    • /
    • pp.309-320
    • /
    • 2007
  • The data imbalance problem which can be uncounted in data mining classification problems typically means that there are more or less instances in a class than those in other classes. It causes low prediction accuracy of the minority class because classifiers tend to assign instances to major classes and ignore the minor class to reduce overall misclassification rate. In order to solve the data imbalance problem, there has been proposed a number of techniques based on resampling with replacement, adjusting decision thresholds, and adjusting the cost of the different classes. In this paper, we study the feasibility of the combination usage of the techniques previously proposed to deal with the data imbalance problem, and suggest a combination method using genetic algorithm to find the optimal combination ratio of the techniques. To improve the prediction accuracy of a minority class, we determine the combination ratio based on the F-value of the minority class as the fitness function of genetic algorithm. To compare the performance with those of single techniques and the matrix-style combination of random percentage, we performed experiments using four public datasets which has been generally used to compare the performance of methods for the data imbalance problem. From the results of experiments, we can find the usefulness of the proposed method.

  • PDF

뉴로-퍼지 모델을 이용한 항공다중분광주사기 영상의 지표면 분류 (Land Surface Classification With Airborne Multi-spectral Scanner Image Using A Neuro-Fuzzy Model)

  • 한종규;류근호;연영광;지광훈
    • 정보처리학회논문지D
    • /
    • 제9D권5호
    • /
    • pp.939-944
    • /
    • 2002
  • In this paper, we propose and apply new classification method to the remotely sensed image acquired from airborne multi-spectral scanner. This is a neuro-fuzzy image classifier derived from the generic model of a 3-layer fuzzy perceptron. We implement a classification software system with the proposed method for land cover image classification. Comparisons with the proposed and maximum-likelihood classifiers are also presented. The results show that the neuro-fuzzy classification method classifies more accurately than the maximum likelihood method. In comparing the maximum-likelihood classification map with the neuro-fuzzy classification map, it is apparent that there is more different as amount as 7.96% in the overall accuracy. Most of the differences are in the "Building" and "Pine tree", for which the neuro-fuzzy classifier was considerably more accurate. However, the "Bare soil" is classified more correctly with the maximum-likelihood classifier rather than the neuro-fuzzy classifier.