DOI QR코드

DOI QR Code

Comparison between Hyperspectral and Multispectral Images for the Classification of Coniferous Species

침엽수종 분류를 위한 초분광영상과 다중분광영상의 비교

  • Cho, Hyunggab (Department of Geoinformatic Engineering, Inha University) ;
  • Lee, Kyu-Sung (Department of Geoinformatic Engineering, Inha University)
  • 조형갑 (인하대학교 지리정보공학과) ;
  • 이규성 (인하대학교 지리정보공학과)
  • Received : 2013.10.10
  • Accepted : 2013.12.31
  • Published : 2014.02.28

Abstract

Multispectral image classification of individual tree species is often difficult because of the spectral similarity among species. In this study, we attempted to analyze the suitability of hyperspectral image to classify coniferous tree species. Several image sets and classification methods were applied and the classification results were compared with the ones from multispectral image. Two airborne hyperspectral images (AISA, CASI) were obtained over the study area in the Gwangneung National Forest. For the comparison, ETM+ multispectral image was simulated using hyperspectral images as to have lower spectral resolution. We also used the transformed hyperspectral data to reduce the data volume for the classification. Three supervised classification schemes (SAM, SVM, MLC) were applied to thirteen image sets. In overall, hyperspectral image provides higher accuracies than multispectral image to discriminate coniferous species. AISA-dual image, which include additional SWIR spectral bands, shows the best result as compared with other hyperspectral images that include only visible and NIR bands. Furthermore, MNF transformed hyperspectral image provided higher classification accuracies than the full-band and other band reduced data. Among three classifiers, MLC showed higher classification accuracy than SAM and SVM classifiers.

수종 간의 유사한 분광특성 때문에 기존의 다중분광영상을 이용한 수종분류는 한계가 있다. 본 연구에서는 경기도 광릉수목원에 분포하는 다섯 종류의 침엽수림을 분류하기 위하여 초분광영상과 다중분광 영상의 적합성을 비교 분석하였다. 연구지역을 대상으로 두 종류의 항공 초분광영상(AISA, CASI)을 촬영하였으며, 비교 목적으로 초분광영상을 이용하여 모의 제작된 ETM+ 다중분광영상을 사용하였다. 영상분류에 사용된 영상은 초분광영상의 모든 밴드를 포함한 영상, PCA 및 MNF 기법으로 차원 축소된 영상, 그리고 분류등급의 분광분리도를 이용하여 소수의 밴드만을 추출한 영상이다. 또한 감독분류 과정에서 MLC, SAM, SVM 등 세 종류의 분류기를 적용하였다. 전체적으로 침엽수종의 분류에 있어서 초분광영상이 다중분광영상보다 높은 분류정확도를 제공하고 있다. 특히 중적외선 파장영역을 포함한 AISA-dual영상이 가장 좋은 분류결과를 보여주었다. 또한 많은 분광밴드를 가진 초분광영상을 MNF기법으로 차원 축소한 영상을 사용했을 때, 다른 영상보다 높은 분류결과가 나왔다. 감독 분류과정에서는 최대우도법(MLC)을 적용했을 때, 가장 높은 분류정확도를 얻었다.

Keywords

References

  1. Asner, G.P. and K.B. Heidebrecht, 2002. Spectral unmixing of vegetation, soil and dry carbon cover in arid regions: comparing multispectral and hyperspectral observations, International Journal of Remote Sensing, 23(19): 3939-3958. https://doi.org/10.1080/01431160110115960
  2. Bork, E.W., N.E. West, and K.P. Price, 1999. Calibration of broad- and narrow-band spectral variables for rangeland cover component quantification, International Journal of Remote Sensing, 20(18): 3641-3662. https://doi.org/10.1080/014311699211255
  3. Bunting, P. and R. Lucas, 2006. The delineation of tree crowns in Australian mixed species forests using hyperspectral compact airborne spectrographic imager (CASI) data, Remote Sensing of Environment, 101: 230-248. https://doi.org/10.1016/j.rse.2005.12.015
  4. Cha, S.Y., U.H. Pi, J.H. Yi, and C.H. Park, 2011. Identification of two common types of forest cover, Pinus densiflora(Pd) and Querqus mongolica(Qm), using the 1st harmonics of a discrete fourier transform, Korean Journal of Remote Sensing, 27(3): 329-338. https://doi.org/10.7780/kjrs.2011.27.3.329
  5. Cho, M.A., P. Debba, R. Mathieu, L. Naidoo, J.V. Aardt, and G.P. Asner, 2010. Improving discrimination of Savanna tree species through a multiple-endmember spectral angle mapper approach: canopy-level analysis, IEEE Transactions on Geoscience and Remote Sensing, 48(11): 4133-4142. https://doi.org/10.1109/TGRS.2010.2058579
  6. Choi, H.A., W.K. Lee, Y.H. Son, T. Kojima, and H. Muraoka, 2010. Vegetation classification using seasonal variation MODIS data, Korean Journal of Remote Sensing, 26(6): 665-673. https://doi.org/10.7780/kjrs.2010.26.6.665
  7. Chung, S.Y., J.S. Yim, and M.Y. Shin, 2011. A comparison of pixel-and segment-based classification for tree species classification using QuickBird imagery, Journal of Korean Forest Society, 100(4): 540-547 (in Korean with English abstract).
  8. Demir, B. and S. Erturk, 2010. Empirical mode decomposition of hyperspectral images for support vector machine classification, IEEE Transactions on Geoscience and Remote Sensing, 48(11): 4071-4084. https://doi.org/10.1109/TGRS.2010.2070510
  9. Enkhbaatar, L., S. Jayakumar, and J. Heo, 2009. Support vector machine and spectral angle mapper classifications of high resolution hyper spectral aerial image, Korean Journal of Remote Sensing, 25(3): 233-242. https://doi.org/10.7780/kjrs.2009.25.3.233
  10. Frank, T.D., 1988. Mapping dominant vegetation communities in the Colorado Rocky Mountain Front Range with Landsat Thematic Mapper and digital terrain data. Photogrammetric Engineering and Remote Sensing, 54: 1727-1734.
  11. Franklin, S.E., R.J. Hall, L.M. Moskal, A.J. Maudie, and M.B. Lavignei, 2000. Incorporating texture into classification of forest species composition from airborne multispectral images, International Journal of Remote Sensing, 21(1): 61-79. https://doi.org/10.1080/014311600210993
  12. Green, A.A., M. Berman, P. Switzer, and M.D. Craig, 1988. A Transformation for Ordering Multispectral Data in Terms of Image Quality with Implications for Noise Removal, IEEE Transactions On Geoscience And Remote Sensing, 26(1): 65-74. https://doi.org/10.1109/36.3001
  13. Han, D.Y., Y.W. Cho, Y.I. Kim, and Y.W. Lee, 2003. Feature selection for image classification of Hyperion data, Korean Journal of Remote Sensing, 19(2): 171-179 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2003.19.2.170
  14. Kim, C., 2008. Use of crown feature analysis to separate the two pine species in QuickBird Imagery, Korean Journal of Remote Sensing, 24(3): 267-272. https://doi.org/10.7780/kjrs.2008.24.3.267
  15. Kim, S.H., K.S. Lee, J.R. Ma, and M.J. Kook, 2005. Current status of hyperspectral remote sensing: principle, data processing techniques, and applications, Korean Journal of Remote Sensing, 21(4): 341-369 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2005.21.4.341
  16. Kruse, F.A., K.S. Keirein-Young, and J.W. Boardman, 1990. Mineral Mapping at Cuprite, Nevada with a 63-channel Imaging spectrometer, Photogrammetric Engineering and Remote Sensing, 56: 83-92.
  17. Leckie, D.G., F.A. Gougeon, S. Tinis, T. Nelson, C.N. Burnett, and D. Paradine, 2005. Automated tree recognition in old growth conifer stands with high resolution digital imagery, Remote Sensing of Environment, 94(3): 311-326. https://doi.org/10.1016/j.rse.2004.10.011
  18. Lee, K.S., W.B. Cohen, R.E. Kennedy, T.K. Maiersperger, and S.T. Gower, 2004. Hyperspectral versus multispectral data for estimating leaf area index in four different biomes, Remote Sensing of Environment, 91: 508-520. https://doi.org/10.1016/j.rse.2004.04.010
  19. Lucas, R., P. Bunting, M. Paterson, and L. Chisholm, 2008. Classification of Australian forest communities using aerial photography, CASI and HyMap data, Remote Sensing of Environment, 112(5): 2088-2103. https://doi.org/10.1016/j.rse.2007.10.011
  20. Martin, M.E., S.D. Newman, J.D. Aber, and R.G. Congalton, 1998. Determining Forest Species Composition Using High Spectral Resolution Remote Sensing Data, Remote Sensing of Enviornment, 65: 249-254. https://doi.org/10.1016/S0034-4257(98)00035-2
  21. Papes, M., R. Tupayachi, P. Martinez, A.T. Peterson, and G.V.N. Powell, 2010. Using hyperspectral satellite imagery for regional inventories: a test with tropical emergent trees in the Amazon Basin, Journal of Vegetation Science, 21(2): 342-354. https://doi.org/10.1111/j.1654-1103.2009.01147.x
  22. Park, N.W., H.Y. Yoo, Y.H. Kim, and S.Y. Hong, 2012. Classification of remote sensing data using random selection of training data and multiple classifiers, Korean Journal of Remote Sensing, 28(5): 489-499 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2012.28.5.2
  23. Thenkabail, P.S., J.G. Lyon, and A. Huete, 2012. Hyperspectral Remote Sensing of Vegetation, CRC Press Taylor & Francis Group, Broken Sound Parkway, NW, USA.
  24. Thenkabail, P.S., E.A. Enclona, M.S. Ashton, and B. Van Der Meer, 2004. Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications, Remote Sensing of Environment, 91(3-4): 354-376. https://doi.org/10.1016/j.rse.2004.03.013
  25. Wang, L., W.P. Sousa, P. Gong, and G.S. Biging, 2004. Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama, Remote Sensing of Environment, 91(3-4): 432-440. https://doi.org/10.1016/j.rse.2004.04.005

Cited by

  1. Study of Comparison of Classification Accuracy of Airborne Hyperspectral Image Land Cover Classification though Resolution Change vol.22, pp.3, 2014, https://doi.org/10.7319/kogsis.2014.22.3.155
  2. Accuracy Assessment of Supervised Classification using Training Samples Acquired by a Field Spectroradiometer: A Case Study for Kumnam-myun, Sejong City vol.24, pp.1, 2016, https://doi.org/10.7319/kogsis.2016.24.1.121
  3. Classification of Forest Vertical Structure in South Korea from Aerial Orthophoto and Lidar Data Using an Artificial Neural Network vol.7, pp.10, 2017, https://doi.org/10.3390/app7101046
  4. Comparing the Potential of Multispectral and Hyperspectral Data for Monitoring Oil Spill Impact vol.18, pp.2, 2018, https://doi.org/10.3390/s18020558
  5. 초분광 영상의 Morphological Attribute Profiles와 추가 밴드를 이용한 감독분류의 정확도 평가 vol.25, pp.1, 2014, https://doi.org/10.7319/kogsis.2017.25.1.009
  6. 하천 부유쓰레기에 대한 분광라이브러리 특성 분석 vol.13, pp.3, 2014, https://doi.org/10.13067/jkiecs.2018.13.3.623
  7. UAV를 활용한 초분광 영상의 하천공간특성 분류 연구 vol.19, pp.10, 2014, https://doi.org/10.5762/kais.2018.19.10.633
  8. 수위변화에 따른 하상재료의 분광특성정보 분석 vol.6, pp.4, 2014, https://doi.org/10.17820/eri.2019.6.4.243
  9. Mapping Forest Vertical Structure in Gong-ju, Korea Using Sentinel-2 Satellite Images and Artificial Neural Networks vol.10, pp.5, 2020, https://doi.org/10.3390/app10051666
  10. Machine Learning for Tree Species Classification Using Sentinel-2 Spectral Information, Crown Texture, and Environmental Variables vol.12, pp.12, 2014, https://doi.org/10.3390/rs12122049
  11. 초분광 영상정보를 이용한 태화강 수계지역의 토지피복 변화분석 vol.24, pp.1, 2014, https://doi.org/10.11108/kagis.2021.24.1.012
  12. Characterizing and classifying urban tree species using bi-monthly terrestrial hyperspectral images in Hong Kong vol.177, pp.None, 2014, https://doi.org/10.1016/j.isprsjprs.2021.05.003