Many researches and analyses have been focused on industrial accidents in order to predict and reduce them. As a similar endeavor, this paper is to develop an expert system for prevention of industrial accidents. Although various previous studies have been performed to prevent industrial accidents, these studies only provide managerial and educational policies using frequency analysis and comparative analysis based on data from past industrial accidents. As an initial step for the purpose of this study, this paper provides a comparative analysis of 4 kinds of algorithms including CHAID, CART, C4.5, and QUEST. Decision tree algorithm is utilized to predict results using objective and quantified data as a typical technique of data mining. Enterprise Miner of SAS and Answer Tree of SPSS will be used to evaluate the validity of the results of the four algorithms. The sample for this work was chosen from 10,536 data related to manufacturing industries during three years$(2002\sim2004)$ in korea. The initial sample includes a range of different businesses including the construction and manufacturing industries, which are typically vulnerable to industrial accidents.
Decision Tree is one of analysis techniques which conducts grouping and prediction into several sub-groups from interested groups. Researcher can easily understand this progress and explain than other techniques. Because Decision Tree is easy technique to see results. This paper uses CART algorithm which is one of data mining technique. It used 273 variables and 70094 data(2010-2011) of working environment survey conducted by Korea Occupational Safety and Health Agency(KOSHA). And then refines this data, uses final 12 variables and 35447 data. To find satisfaction factor in working environment, this page has grouped employee to 3 types (under 30 age, 30 ~ 49age, over 50 age) and analyzed factor. Using CART algorithm, finds the best grouping variables in 155 data. It appeared that 'comfortable in organization' and 'proper reward' is the best grouping factor.
This paper presents a design and implementation example of intelligent society member management system that is constructed to induce various research activity. Based on members data and society activity record, the system executed data mining. In the process of data mining useful society activity rules was produced and in result members could effectively interact with the system. Decision Tree Algorithm was used in the process, which is one of the methods of data mining. We presemts a plan for personalization website to provide user oriented administration policy and dynamic interface by using analyzed information of society activity rules produced.
Journal of Korea Society of Digital Industry and Information Management
/
제11권4호
/
pp.33-45
/
2015
Currently, Internet is used an essential tool in the business area. Despite this importance, there is a risk of network attacks attempting collection of fraudulence, private information, and cyber terrorism. Firewalls and IDS(Intrusion Detection System) are tools against those attacks. IDS is used to determine whether a network data is a network attack. IDS analyzes the network data using various techniques including expert system, data mining, and state transition analysis. This paper tries to compare the performance of two data mining models in detecting network attacks. They are decision tree (C4.5), and neural network (FANN model). I trained and tested these models with data and measured the effectiveness in terms of detection accuracy, detection rate, and false alarm rate. This paper tries to find out which model is effective in intrusion detection. In the analysis, I used KDD Cup 99 data which is a benchmark data in intrusion detection research. I used an open source Weka software for C4.5 model, and C++ code available for FANN model.
Journal of Korea Society of Digital Industry and Information Management
/
제17권3호
/
pp.1-7
/
2021
The number of new students at many domestic universities is declining. In particular, private universities, which are highly dependent on tuition, are experiencing a crisis of existence. Amid the declining school-age population, universities are striving to fill new students by improving the quality of education and increasing the student employment rate. Recently, there is an increasing number of cases of using the accumulated big data of universities to prepare measures to fill new students. A representative example of this is the analysis of factors that affect student employment. Existing employment-influencing factor analysis studies have applied quantitative models such as regression analysis to university big data. However, since the factors affecting employment differ by major, it is necessary to reflect this. In this paper, the factors affecting employment by major are analyzed using the data of University C and the decision tree model. In addition, based on the analysis results, a roadmap for student employment by major is recommended. As a result of the experiment, four decision tree models were constructed for each major, and factors affecting employment by major and roadmap were derived.
Henry Onyebuchi, Okonkwo;Godwin Ejakhe, Omokhua;Uzoma Darlington, Chima
Journal of Forest and Environmental Science
/
제38권4호
/
pp.275-283
/
2022
A study was designed to investigate the pattern of sexual dimorphism in a plantation of Garcinia kola. Twenty trees were randomly selected for the study and have been observed to flower regularly. A total of 100 inflorescence were randomly collected from the crown of each tree and 500 flowers randomly assessed within the period of four (4) flowering seasons. Floral sex assessment was done visually and with a hand magnifying lens; floral morphometric measurements (i.e. pedicel and perianth length and breadth), inflorescence length, and breadth) was taken using a veneer caliper; number of flowers per inflorescence and inflorescence per twig was counted; while, data analysis was conducted on excel using analysis of variance and pairwise t-test comparison. Four floral sexes were identified in the G. kola plantation studied which were unisexual male flowers, unisexual female flowers, cosexual unisexual male flowers, and cosexual hermaphrodite flowers. Three tree sexes were identified viz: inconstant male, invariant female, and cosexual trees. The plantation was significantly sexually dimorphic in floral sex and phenotypic traits (i.e. pedicel and perianth size), and as well as sexually dimorphic in tree sex and reproductive phenotypic traits (i.e. inflorescence size, number of inflorescences per twig, and number of flower bud per inflorescence). The sexual system of the plantation was therefore trioecious with features suggestive of evolving dioecy through the gynodioecious pathway.
Journal of Korea Society of Digital Industry and Information Management
/
제19권1호
/
pp.109-118
/
2023
Data-based analysis methods have become used more for estimating or predicting housing prices, and neural network models and decision trees in the field of big data are also widely used more and more. Neural network models are often evaluated to be superior to existing statistical models in terms of estimation or prediction accuracy. However, there is ambiguity in determining the input feature of the input layer of the neural network model, that is, the type and number of input features, and decision trees are sometimes used to overcome these disadvantages. In this paper, we evaluate the existing methods of using decision trees and propose the method of using decision trees to prioritize input feature selection in neural network models. This can be a complementary or combined analysis method of the neural network model and decision tree, and the validity was confirmed by applying the proposed method to house price estimation. Through several comparisons, it has been summarized that the selection of appropriate input characteristics according to priority can increase the estimation power of the model.
Journal of the Korea Institute of Military Science and Technology
/
제27권1호
/
pp.80-93
/
2024
This study attempted to analyze the factors that influence the participation of beneficiary companies in the government's defense industry promotion support project. To this end, experimental data were analyzed by constructing a prediction model consisting of highly important variables in beneficiary company decisions among various company information using the decision tree model, one of the data mining techniques. In addition, various rules were derived to determine the beneficiary companies of the government's support project using the analysis results expressed as decision trees. Three policy measures were presented based on the important rules that repeatedly appear in different predictive models to increase the effect of the government's industrial development. Using the analysis methods presented in this study and the determinants of the beneficiary companies of the government support project will help create a sustainable future defense industry growth environment.
Proceedings of the Korean Institute Of Construction Engineering and Management
/
한국건설관리학회 2003년도 학술대회지
/
pp.485-490
/
2003
Nowadays the rapid change in construction environment getting more globalized and complicated has caused lots of unexpected risks from inside and out of the country, so more sophisticated construction management strategies are being strongly needed. This paper suggests a risk management model with which we can estimate the appropriate contingency by quantifying the amount of probable risks immanent in large construction projects, which have a high degree of uncertainty in the anticipation of the total construction cost. To develop the model, the risk factors that make cost variations are elicited based on the real data of the contingencies assigned to the past projects. Furthermore, the influential relationship of risk factors is structured by applying the CRM(Cost Risk Model) which is the synthetic model of Monte Carlo Simulation, Influence Diagram and Decision Tree. The ultimate outcome of this research can by validated by tile case study with a large construction project performed.
Journal of the Korean Operations Research and Management Science Society
/
제40권1호
/
pp.91-116
/
2015
This study aims to provide public sectors with eco-efficiency information. To implement the purposes of the study, environmental and economic variables of Eco-Efficiency were identified through decision tree model, then the relative Eco-Efficiencies of 243 public sectors were evaluated through input-oriented DEA (Data Envelopment Analysis) model. Specifically, the amount of public purchasing per a staff and the amount of energy use per a staff were considered as input factors. Sales per a staff was considered as output factor. The result shows that most of the public sectors (94.2%) were evaluated as "inefficient" taking into consideration of average value, 0.501 from market-based public corporations, 0.288 from local public corporations, 0.28 from quasi-market-based public corporations, 0.269 from fund-management-based quasi-governmental institutions, 0.09 from non-classified public institutions, and 0.078 from commissioned-service-based quasi-governmental institutions. Furthermore, it is possible to establish a plan for internal Eco-Efficiency improvement based on information of the reference set. In order to improve the Eco-Efficiency in the public sectors in the long term, environmental impacts of the overall public sectors' operations (e.g., energy saving, water saving, waste reduction, and purchasing of green products) needs to be properly proposed in consideration of BSC (Balanced Scorecard) indicators of public sectors.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.