Real, Alberto Del;Real, Octavio Del;Sardina, Sebastian;Oyonarte, Rodrigo
대한치과교정학회지
/
제52권2호
/
pp.102-111
/
2022
Objective: To develop and explore the usefulness of an artificial intelligence system for the prediction of the need for dental extractions during orthodontic treatments based on gender, model variables, and cephalometric records. Methods: The gender, model variables, and radiographic records of 214 patients were obtained from an anonymized data bank containing 314 cases treated by two experienced orthodontists. The data were processed using an automated machine learning software (Auto-WEKA) and used to predict the need for extractions. Results: By generating and comparing several prediction models, an accuracy of 93.9% was achieved for determining whether extraction is required or not based on the model and radiographic data. When only model variables were used, an accuracy of 87.4% was attained, whereas a 72.7% accuracy was achieved if only cephalometric information was used. Conclusions: The use of an automated machine learning system allows the generation of orthodontic extraction prediction models. The accuracy of the optimal extraction prediction models increases with the combination of model and cephalometric data for the analytical process.
산겨릅나무(Acer tegmentosum)는 지방간, 가염, 간경변증, 간암에 뚜렷한 치료 작용이 있으며, 특히 간에 쌓인 독을 풀고 간세포를 살리는 효능이 있어 약용으로 많이 사용된다. 그러나 산겨릅나무 줄기에는 독성물질이 있어 안전성, 오남용 등의 문제점을 가지고 있다. 그래서 산겨릅나무 줄기의 독성물질을 제거하고 독성 물질에 대한 연구를 활발히 하기 위해 먼저 초임계유체 추출기법(SFE, Supercritical Fluid Extraction)을 이용하였다. 초임계유체 추출에서 최적의 실험 조건은 압력 100 bar, 추출온도 $40^{\circ}C$로 구성하고, 초임계 $CO_2$의 유속 3 mL/min과 modifier인 에탄올의 유속 0.2 mL/min 이다.
개체 추출은 원격탐사 분야의 주된 연구분야 중 하나로, 고해상도 위성영상의 활용도가 높아짐에 따라 보다 세밀하고 특정적인 개체를 추출할 수 있게 되었다. 기존의 화소 기반의 영상 처리 기법들은 고해상도 위성영상의 분광 및 기하학적인 다양성과 복잡성을 제대로 반영하기 어렵기 때문에 근래에는 영상분할 기술을 기반으로 하는 많은 연구가 진행되고 있다. 그런데 단순히 RGB 밴드 영상에 한 가지 영상분할 기법을 적용하는 것으로는 다양한 분광 특성과 형태를 갖는 여러 대상 개체들을 추출하는데 한계가 있다. 지표면의 피복의 종류를 식별하고, 상태를 모니터링 하는데 효과적인 분광지수는 개체 추출 과정에 효율적으로 이용할 수 있다. 본 연구에서는 영상분할 기술을 기반으로 하여 분광지수를 이용한 보다 효과적인 개체 추출 기술을 제안하고자 하였다. 다양한 종류의 개체를 추출하기 위하여 의사결정 트리 분류 기술을 사용하였으며 고해상도 위성인 WorldView-2의 8밴드 다중분광 영상을 이용한 실험을 통해 각 대상 개체를 추출하기에 적합한 분광지수들을 선택하고 이의 효용성을 평가해보고자 하였다. 그 결과, 건물, 도로, 나지, 식생, 수계, 그림자의 6개 클래스에 대한 개체들을 선택적으로 분류할 수 있었고, 식생지수를 비롯한 다양한 분광지수들이 각 개체의 종류를 선별해내는데 효과적으로 사용될 수 있음을 확인하였다.
산림지역에서 이산화탄소흡수량 산출을 위해서는 현지산림조사와 영상정보 등의 원격탐사 자료를 이용함으로써 흉고직경이나 수고와 같은 산림 탄소흡수량 추정에 필요한 기본자료를 정량적으로 수집하여 활용한다. 그러나 여전히 현장조사의 비중이 높고 혼효림이 많은 국내 산림 여건상 취득된 산림정보의 정확도가 낮은 실정이다. 따라서 본 연구에서는 LiDAR 자료를 이용하여 경사기반 영역확장법을 적용하여 수목의 수직적 구조를 파악하고 수목 정점추출 알고리즘을 통한 개체목의 수고 및 개체수를 파악하여 이를 현장조사를 통한 자료로부터 도출된 수고-흉고직경 관계식에 대입하여 정량적인 이산화탄소흡수량 산출에 필요한 기본데이터를 산출 할 수 있었다. 또한 총 3종류의 수목에 대한 이산화탄소흡수량을 계산하고 단위면적당 이산화탄소흡수량을 추정할 수 있었다.
Objectives This study was conducted to determine the depositional characteristics of several tree barks, including Ginkgo (Ginkgo biloba), Pine (Pinus densiflora), Platanus (Platanus), and Metasequoia (Metasequoia glyptostroboides). These were used as passive air sampler (PAS) of atmospheric polybrominated diphenyl ethers (PBDEs). Methods Tree barks were sampled from the same site. PBDEs were analyzed by high-resolution gas chromatography/high-resolution mass spectrometer, and the lipid content was measured using the gravimetric method by n-hexane extraction. Results Gingko contained the highest lipid content (7.82 mg/g dry), whereas pine (4.85 mg/g dry), Platanus (3.61 mg/g dry), and Metasequoia (0.97 mg/g dry) had relatively lower content. The highest total PBDEs concentration was observed in Metasequoia (83,159.0 pg/g dry), followed by Ginkgo (53,538.4 pg/g dry), Pine (20,266.4 pg/g dry), and Platanus (12,572.0 pg/g dry). There were poor correlations between lipid content and total PBDE concentrations in tree barks ($R^2$=0.1011, p =0.682). Among the PBDE congeners, BDE 206, 207 and 209 were highly brominated PBDEs that are sorbed to particulates in ambient air, which accounted for 90.5% (84.3-95.6%) of the concentration and were therefore identified as the main PBDE congener. The concentrations of particulate PBDEs deposited on tree barks were dependent on morphological characteristics such as surface area or roughness of barks. Conclusions Therefore, when using the tree barks as the PAS of the atmospheric PBDEs, samples belonging to same tree species should be collected to reduce errors and to obtain reliable data.
Over the past several years, many studies have been carried out in the field of 3D data inspection systems. Several attempts have been made to improve the quality of manufactured parts. The introduction of laser sensors for inspection has made it possible to acquire data at a remarkably high speed. In this paper, a robust inspection technique for detecting defects in 3D pressed parts using laser-scanned data is proposed. Point cloud data are segmented for the extraction of features. These segmented features are used for shape matching during the localization process. An iterative closest point (ICP) algorithm is used for the localization of the scanned model and CAD model. To achieve a higher accuracy rate, the ICP algorithm is modified and then used for matching. To enhance the speed of the matching process, aKd-tree algorithm is used. Then, the deviation of the scanned points from the CAD model is computed.
도시지역에서 산소를 발생하고 이산화탄소를 감소시킬 수 있는 중요한 지상객체로 수목을 뽑을 수 있다. 이러한 수목의 관리를 위하여 라이다 자료를 이용한 많은 연구가 진행되고 있다. 그러나 국내에서 라이다 자료처리 소프트웨어가 미비하여 국외 소프트웨어에 의존하고 있다. 이에 본 연구에서는 라이다 자료에서 수목을 자동으로 추출할 수 있는 자동화 공정을 제안하였다. 제안한 공정에는 라이다 자료의 분류, 건물영역, 수목 등을 자동으로 추출할 수 있는 기능이 개발되었다. 제안한 공정은 용인지역의 연구대상지에 적용하여 실험을 수행하였으며 약 88%의 수목이 자동화 공정을 통해서 추출되었다.
In general, stepwise hot steaming process is known to be effective in improving its biological activities; however, not much employed in processing Codonopsis lanceolata due to its hardness. The complex processed C. lanceolata showed highest free radical scavenging acitivity as 45.21%. Total phenol and flavonoid content were of complex processed C. lanceolata higher than conventional extract and alone steaming process. It was showed the lower melanogenesis rate on melanin production test by B16F10 cells as 27.46%. High inhibitory of tyrosinase was also measured as 28.61% by adding steamed Codonopsis lanceolata extracts by high pressure extraction of 1.0 $mg/m{\ell}$. And anti-wrinkle activity were 39.08%. In comparing phenolic acids profiles in the extract, in general higher amounts of polyphenol were obtained possibly by easy release of active components during thermal processing, which results in better antioxidant activities than that of general extract. This findings can also be supported by result that the extract by steaming process showed better activities than the general extraction extract.
본 논문에서는 국부상관계수(local correlation coefficients; LCC)의 영역 평균변화량을 질감특징으로 사용하여 질감 영역을 추출하는 효율적인 알고리즘을 제안한다. 질감영역 추출을 위한 알고리듬의 핵심은 각 방향에 따른 국부상관계수들의 평균 변화량은 평탄영역에서 보다 질감영역에서 대체로 크게 나타나는 특성을 이용하는 것이다. 제안한 알고리듬의 성능을 평가하기 위하여 8비트 256$\times$256 크기를 가진 9개의 시험영상(Lena, Bsail, Camera, Face, Woman, Elaine, Jet, Tree, Tank)을 사용한다. 실험결과에서 제안한 특징은 시각적으로 질감영역으로 보이는 영역들을 잘 추출함을 보인다.
International Journal of Fuzzy Logic and Intelligent Systems
/
제16권1호
/
pp.27-35
/
2016
Black-box classifiers, such as artificial neural network and support vector machine, are a popular classifier because of its remarkable performance. They are applied in various fields such as inductive inferences, classifications, or regressions. However, by its characteristics, they cannot provide appropriate explanations how the classification results are derived. Therefore, there are plenty of actively discussed researches about interpreting trained black-box classifiers. In this paper, we propose a method to make a fuzzy logic-based classifier using extracted rules from the artificial neural network and support vector machine in order to interpret internal structures. As an object of classification, an anomalous propagation echo is selected which occurs frequently in radar data and becomes the problem in a precipitation estimation process. After applying a clustering method, learning dataset is generated from clusters. Using the learning dataset, artificial neural network and support vector machine are implemented. After that, decision trees for each classifier are generated. And they are used to implement simplified fuzzy logic-based classifiers by rule extraction and input selection. Finally, we can verify and compare performances. With actual occurrence cased of the anomalous propagation echo, we can determine the inner structures of the black-box classifiers.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.