• Title/Summary/Keyword: Tree Extraction

Search Result 258, Processing Time 0.027 seconds

Decision Tree Learning Algorithms for Learning Model Classification in the Vocabulary Recognition System (어휘 인식 시스템에서 학습 모델 분류를 위한 결정 트리 학습 알고리즘)

  • Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.11 no.9
    • /
    • pp.153-158
    • /
    • 2013
  • Target learning model is not recognized in this category or not classified clearly failed to determine if the vocabulary recognition is reduced. Form of classification learning model is changed or a new learning model is added to the recognition decision tree structure of the model should be changed to a structural problem. In order to solve these problems, a decision tree learning model for classification learning algorithm is proposed. Phonological phenomenon reflected sound enough to configure the database to ensure learning a decision tree learning model for classifying method was used. In this study, the indoor environment-dependent recognition and vocabulary words for the experimental results independent recognition vocabulary of the indoor environment-dependent recognition performance of 98.3% in the experiment showed, vocabulary independent recognition performance of 98.4% in the experiment shown.

A Study on Keyword Extraction and Expansion for Web Text Retrieval (웹 문서 검색을 위한 검색어 추출과 확장에 관한 연구)

  • Yoon, Sung-Hee
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.9
    • /
    • pp.1111-1118
    • /
    • 2004
  • Natural language query is the best user interface for the users of web text retrieval systems. This paper proposes a retrieval system with expanded keyword from syntactically-analyzed structures of user's natural language query based on natural language processing technique. Through the steps combining or splitting the compound nouns based on syntactic tree traversal, and expanding the other-formed or shorten-formed keyword into multiple keyword, it shows that precision and correctness of the retrieval system was enhanced.

  • PDF

Altering LCA of dependency parse trees for improving relation extraction from adjective clauses (형용사구에서의 관계추출 개선을 위한 의존구문트리의 최소공동조상 (LCA) 변경)

  • Lee, Dae-Seok;Myaeng, Sung-Hyon
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.552-556
    • /
    • 2018
  • 본 논문에서는 텍스트에서 개체(entity) 간 관계(relation) 추출 문제에서 의존구문트리를 이용하여 자질을 추출할 때 형용사구 내에 관계가 나타나는 경우의 성능을 향상시키는 방법을 제안한다. 일률적으로 의존구문트리의 최소공동조상(LCA: Least Common Ancestor)을 이용하는 일반적인 방법보다 형용사구가 나타날 때는 형용사구의 술어를 대신 이용하는 것이 더 좋은 자질이 된다는 것을 제안하고 로지스틱 회귀분석, SVM(linear), SVM(exponential kernel)을 이용한 실험들을 통해 그 효과를 확인하였다. 이는 트리커널을 이용한 것과 같이 의존구문트리의 최소공동조상이 주요한 역할을 하는 관계추출 모델들의 성능을 높일 수 있음을 보여 준다. 수행한 실험 과정을 통해 관계추출 데이터 셋에서 형용사구 내 관계를 포함하는 문장이 전체에서 차지하는 비율이 낮을 경우 생길 수 있는 문제를 추가적으로 얻을 수 있었다.

  • PDF

Design and Implementation of a Data Extraction Tool for Analyzing Software Changes

  • Lee, Yong-Hyeon;Kim, Kisub;Lee, Jaekwon;Jung, Woosung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.8
    • /
    • pp.65-75
    • /
    • 2016
  • In this paper, we present a novel approach to help MSR researchers obtain necessary data with a tool, termed General Purpose Extractor for Source code (GPES). GPES has a single function extracts high-quality data, e.g., the version history, abstract syntax tree (AST), changed code diff, and software quality metrics. Moreover, features such as an AST of other languages or new software metrics can be extended easily given that GPES has a flexible data model and a component-based design. We conducted several case studies to evaluate the usefulness and effectiveness of our tool. Case studies show that researchers can reduce the overall cost of data analysis by transforming the data into the required formats.

Performance Analysis of Opinion Mining using Word2vec (Word2vec을 이용한 오피니언 마이닝 성과분석 연구)

  • Eo, Kyun Sun;Lee, Kun Chang
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2018.05a
    • /
    • pp.7-8
    • /
    • 2018
  • This study proposes an analysis of the Word2vec-based machine learning classifiers for the sake of opinion mining tasks. As a bench-marking method, BOW (Bag-of-Words) was adopted. On the basis of utilizing the Word2vec and BOW as feature extraction methods, we applied Laptop and Restaurant dataset to LR, DT, SVM, RF classifiers. The results showed that the Word2vec feature extraction yields more improved performance.

  • PDF

Collaborative Filtering and Genre Classification for Music Recommendation

  • Byun, Jeong-Yong;Nasridinov, Aziz
    • Annual Conference of KIPS
    • /
    • 2014.11a
    • /
    • pp.693-694
    • /
    • 2014
  • This short paper briefly describes the proposed music recommendation method that provides suitable music pieces to a listener depending on both listeners' ratings and content of music pieces. The proposed method consists of two methods. First, listeners' ratings prediction method is a combination the traditional user-based and item-based collaborative filtering methods. Second, genre classification method is a combination of feature extraction and classification procedures. The feature extraction step obtains audio signal information and stores it in data structure, while the second one classifies the music pieces into various genres using decision tree algorithm.

Fault Detection, Diagnosis, and Optimization of Wafer Manufacturing Processes utilizing Knowledge Creation

  • Bae Hyeon;Kim Sung-Shin;Woo Kwang-Bang;May Gary S.;Lee Duk-Kwon
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.3
    • /
    • pp.372-381
    • /
    • 2006
  • The purpose of this study was to develop a process management system to manage ingot fabrication and improve ingot quality. The ingot is the first manufactured material of wafers. Trace parameters were collected on-line but measurement parameters were measured by sampling inspection. The quality parameters were applied to evaluate the quality. Therefore, preprocessing was necessary to extract useful information from the quality data. First, statistical methods were used for data generation. Then, modeling was performed, using the generated data, to improve the performance of the models. The function of the models is to predict the quality corresponding to control parameters. Secondly, rule extraction was performed to find the relation between the production quality and control conditions. The extracted rules can give important information concerning how to handle the process correctly. The dynamic polynomial neural network (DPNN) and decision tree were applied for data modeling and rule extraction, respectively, from the ingot fabrication data.

Evaluation of Feature Extraction and Matching Algorithms for the use of Mobile Application (모바일 애플리케이션을 위한 특징점 검출 연산자의 비교 분석)

  • Lee, Yong-Hwan;Kim, Heung-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.4
    • /
    • pp.56-60
    • /
    • 2015
  • Mobile devices like smartphones and tablets are becoming increasingly capable in terms of processing power. Although they are already used in computer vision, no comparable measurement experiments of the popular feature extraction algorithm have been made yet. That is, local feature descriptors are widely used in many computer vision applications, and recently various methods have been proposed. While there are many evaluations have focused on various aspects of local features, matching accuracy, however there are no comparisons considering on speed trade-offs of recent descriptors such as ORB, FAST and BRISK. In this paper, we try to provide a performance evaluation of feature descriptors, and compare their matching precision and speed in KD-Tree setup with efficient computation of Hamming distance. The experimental results show that the recently proposed real valued descriptors such as ORB and FAST outperform state-of-the-art descriptors such SIFT and SURF in both, speed-up efficiency and precision/recall.

Anticancer and Antioxidant Activity of Allergen-Removed Extract in Rhus verniciflua Stokes

  • Kim, Myong-Jo;Choi, Won-Cheol;Barshinikov, A. M.;Kobayashi, A.
    • Korean Journal of Medicinal Crop Science
    • /
    • v.10 no.4
    • /
    • pp.288-293
    • /
    • 2002
  • Allergen-removed-extract was produced from Rush verniciflua by two phase methods. Phase one was high temperature treatment of Rush verniciflua tree to get allergen-removed-extract. Phase two was extraction of solution from phase one product using water or organic solvents. The solutions from above method show high antioxidant activity, anticancer activity, and improvement in lung function, but did not contain urushiol family compounds.

Assocate Object Extraction Using personalized user Learning (개인화된 사용자 학습을 위한 연관 객체 추출 설계 및 구현)

  • 유수경;김교정
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2004.05a
    • /
    • pp.636-639
    • /
    • 2004
  • 본 논문은 웹 도큐먼트를 기반으로 사용자에게 의미 있는 정보를 찾아주기 위한 연관 객체 추출 기법인 PMPL(Personalized Multi-Strategey Pattern Loaming) 시스템을 제안하고자 한다. PMPL 모듈은 인터넷의 정보를 여과하여 필터링하고, 사용자 개인화의 키워드를 중심으로 연관된 객체를 추출한다. 이때 연관된 객체 추출 시 대용량 데이터에서 시간적, 공간적면에서 효율적인 연관 탐색 기법인 Fp-Tree와 Fp-Growth 알고리즘을 적용시켰으며, 연관규칙 탐색을 보완하기 위해 가중치 기법인 만유인력 기법을 적용시켰다. PMPL 시스템을 실행한 결과 개인화된 사용자 중심어 기초로 기존의 단일 학습 기법에 비해 더 많은 의미 있는 연관 지식을 추출한 결과가 보였다.

  • PDF