• Title/Summary/Keyword: Treatment Technology

Search Result 14,992, Processing Time 0.044 seconds

Effect of Additional Electrical Current on Adhesion Strength between Copper and Polyimide Films (인가 전류가 구리 도금 피막과 폴리이미드 필름의 접합력에 미치는 영향)

  • Lee, Jang-Hun;Han, Yoonsung;Lee, Ho-Nyun;Hur, Jin-Young;Lee, Hong Kee
    • Journal of Surface Science and Engineering
    • /
    • v.46 no.1
    • /
    • pp.9-15
    • /
    • 2013
  • The effect of the additionally applied electrical current on the adhesion strength between electroless Cu and polyimide films was investigated. Peel tests were performed after applying electrical current within the range from 0.1 to 100 mA for the duration from 1 to 30 minutes. Sample with more than 1 mA of additional electrical current for 1 minute showed higher adhesion strength than that without additional electrical current. However, samples with 10 mA of additional electrical current for more than 10 miniutes showed the degradation of adhesion strength. Ra and RMS values of the peeled polyimide surface were proportional to the adhesion strength though there were no significant changes in the morphology of the peeled surfaces with varied amount and time-length of additional electrical current. Applying electrical current could increase the density of chemical bonding, which results in increase of the adhesion strength between copper and polyimide. However, in the case of applying additional electrical current for excessive amount or time, the degradation of the adhesion strength owing to the formation of copper oxide at the interface could occur.

Change in Microstructure with the Gas Quenching Rate during Austempering Treatment of SAE 1078 Steel (SAE 1078 강의 오스템퍼링 열처리시 가스 퀜칭 속도에 따른 미세조직의 변화)

  • Gi-Hoon Kwon;Hyunjun Park;Kuk-Hyun Yeo;Young-Kook Lee;Sang-Gweon Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.3
    • /
    • pp.121-127
    • /
    • 2023
  • When high carbon steel is heated in an appropriate austenizing temperature range and subjected to austempering, the size and shape of lamellar structure can be controlled. The high carbon steel sheet having the pearlite structure has excellent elastic characteristics because it has strong restoring force when properly rolled, and is applied in a process known as patenting-process using lead bath. In the case of isothermal treatment using lead-medium, it is possible to quickly reach a uniform temperature due to high heat transfer characteristics, but it is difficult to replace it with process technology that requires treatment to remove harmfulness lead. In this study, we intend to develop fluidization technology using garnet powder to replace the lead medium. After heating the high-carbon steel, the cooling rate was changed by compressed air to the vicinity of the nose of the continuous cooling curve, and then maintained for 90 s and then exposed to room temperature. The microstructure of the treated specimens were analyzed and compared with the existing products treated with lead bath. The higher the flow rate of compressed air, the faster the cooling rate to the pearlite transformation temperature, so lamellar spacing decreases and the hardness tends to increase.

The Ecological Vegetation by the Neutralizing Treatment Techniques of the Acid Sulfate Soil (특이산성토의 중화처리기법에 따른 생태적 녹화)

  • Cho, Sung-Rok;Kim, Jae-Hwan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.1
    • /
    • pp.47-59
    • /
    • 2019
  • This study was composed of four treatments [no treatment, phosphate + limestone layer treatment, phosphate + sodium bicarbonate + cement layer treatment, and phosphate + sodium bicarbonate + limestone layer treatment] for figuring out vegetation effects on the acid drainage slope. Treated acid neutralizing techniques were effective for neutralizing acidity and vegetative growth in order of [first: phosphate + sodium bicarbonate + limestone layer treatment, second: phosphate + sodium bicarbonate+cement layer treatment, third: phosphate + limestone layer treatment and fourth: no treatment] on the acid drainage slope. We found out that sodium bicarbonate treatment was additory effect on neutralizing acidity and increasing vegetaive growth besides phosphate and neutralizing layer treatments. In neutralizing layer treatments, Limestone layer was more effective for vegetation and acidity compared to cement layer treatment. Cement layer showed negative initial vegetative growth probably due to high soil hardness and toxicity in spite of acid neutralizing effect. Concerning plants growth characteristics, The surface coverage rates of herbaceous plants, namely as Lotus corniculatus var. japonicus and Coreopsis drummondii L were high in the phosphate + sodium bicarbonate + limestone layer treatment while Festuca arundinacea was high in the phosphate + sodium bicarbonate + cement layer treatment. We also figured out that soil acidity affected more on root than top vegetative growth.

DEINKING OF COLORED OFFSET NEWSPRINT WITH ENZYME TREA TMENT IN COOPERATION WITH ULTRASONIC WAVE

  • Yimin XIE;U, Hong-W;Yanming LAI
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11b
    • /
    • pp.149-152
    • /
    • 1999
  • A new process for deinking of colored offset newsprint, i.e. enzyme treatment in cooperation with ultrasonic wave was developed in the present study. The physical characteristics such as fiber length, coarseness, crystallinity index of the deinked pulps were investigated and the sugar residues released from the treatment were analyzed. It was found that colored offset newsprint could be deinked effectively by cellulase treatment when ultrasonic wave was applied. The brightness increased by 5% ISO over that of control experiment and the pigment content was reduced markedly. Though the ultrasonic wave had little effect on the strength and crystallinity of the pulp, the treatment of enzyme combined with ultrasonic wave reduced the coarseness and fiber length to some extent. It was also found that ultrasonic wave could accelerate the hydrolysis of cellulose and hemicellulose during the cellulase treatment.

PROTECTIVE EFFECT OF SELENIUM ON GLUTATHIONE METABOLISM BY MERCURY TOXICITY IN THE CHO CELLS

  • Byun, Boo-Hyung;Cho, Su-Jung;Chung, An-Sik
    • Toxicological Research
    • /
    • v.7 no.2
    • /
    • pp.141-149
    • /
    • 1991
  • The treatment with 5ng/ml of mercuric chloride caused time-dependent decreases, and in the activities of GSH S-transferase and GSH-peroxidase, and in the concentration of GSH in CHO cells. Three hours after treatment of $Hg^{2+}$, the activity of GSH S-transferase was decreased to almost half value of control group and the activity of GSH-peroxidase was reduced significantly at 6 hr after treatment. The concentration of GSH was decreased 2 hr after treatment of $Hg^{2+}$ and was decreased to nearly half value of control group 3 hr after treatment.

  • PDF

Treatment of Domestic Wastewater by the Application of Electrochemical Membrane Bioreactor and Generation of Bioelectricity

  • Yadav, Saurabh;Kamsonlian, Suantak;Pal, Shubham
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.532-537
    • /
    • 2022
  • The need for obtaining treated wastewater that meets high quality standards for discharge or reuse necessitates the use of highly efficient wastewater treatment techniques. In the present study, experiments have been carried out to reduce the concentration level of biological oxygen demand (BOD), chemical oxygen demand (COD), and total dissolved solids (TDS) from the wastewater sample. Treatment of sample of a real municipal wastewater collected from a sewage treatment plant (STP) was carried out in an electrochemical membrane bioreactor (EMBR). The EMBR was operated continuously for five days, and readings were taken at regular intervals. This paper has experimental results conducted in EMBR that indicate reduction of BOD, COD, and TDS levels of up to 32.25%, 29.25%, and 31.93%, respectively. Further, it was observed that a current of magnitude of 0.00752 mA was generated due to the metabolic activities of bacteria present in municipal wastewater, which gradually decreased day by day due to the decay of bacteria.

Recent advances in water and wastewater treatment using membranes with carbon nanotubes

  • Michal, Bodzek;Krystyna, Konieczny;Anna, Kwiecinska-Mydlak
    • Membrane and Water Treatment
    • /
    • v.13 no.6
    • /
    • pp.259-290
    • /
    • 2022
  • Carbon nanotubes (CNTs), due to their excellent physical, chemical and mechanical properties and their ability to prepare new membranes with attractive properties, have found applications in water and wastewater technology. CNT functionalization, which involves the introduction of different types of functional groups into pure CNTs, improves the capabilities of CNT membranes for water and wastewater treatment. It turns out that CNT-based membranes have many advantages, including enhanced water permeability, high selectivity and anti-fouling properties. However, their full-scale application is still limited by their high cost. With their tremendous separation efficiency, low biofouling potential and ultra-high water flux, CNT membranes have the potential to be a leading technology in water treatment in the future, especially in desalination.

Effect of Heat-treatment Temperature on the Physical Properties of Iron Oxide Nanoparticles Synthesized by Using Permanent Magnet Scrap (영구자석 스크랩으로 합성한 산화철 나노입자의 물성에 미치는 열처리 온도의 영향)

  • Hong, Sung-Jei;Hong, Sang Hyeok;Jo, Ajin;Kim, Young-Sung;Kim, ByeongJun;Yang, Suwon;Lee, Jae-Yong
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.110-116
    • /
    • 2022
  • In this study, iron oxide (FeOx) nanoparticles were synthesized using iron (Fe) by-products recovered from NdFeB permanent magnet scraps, and the effect of heat-treatment temperature on the physical properties of the FeOx nanoparticles was investigated. In order to prepare the FeOx nanoparticles, 2.0 M ammonia (NH4OH) solution was added to an iron by-product solution diluted to c.a. 10 wt% in D.I. water, which led to the precipitation of the iron oxide precursor. Then, the FeOx nanoparticles were synthesized by heat-treatment at 300 ℃, 400 ℃, 500 ℃ and 600 ℃. After that, the physical properties of the FeOx nanoparticles were investigated in order to understand the effect of the heat-treatment temperature. The results of the X-ray diffraction (XRD) analysis showed that the diffraction peak in accordance with the <104> direction increased as the heat-treatment increased, and a diffraction peak indicating the α-Fe2O3 crystal structure was detected at heat-treatment temperatures above 500 ℃. The BET specific surface area analysis revealed that the specific surface area decreased as the heat-treatment temperature increased to above 400 ℃. Observation with a high resolution transmission electron microscope (HRTEM) showed that rod-shaped nanoparticles were formed, and the size of the nanoparticles showed a tendency to increase as the heat-treatment temperature increased.

Effect of Protein Sources on Rumen Microbial Protein Synthesis Using Rumen Simulated Continuous Culture System

  • Joo, J.W.;Bae, G.S.;Min, W.K.;Choi, H.S.;Maeng, W.J.;Chung, Y.H.;Chang, M.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.3
    • /
    • pp.326-331
    • /
    • 2005
  • A rumen simulated continuous culture (RSCC) system was used to study the influence of supplementation of the three different types of protein sources such as urea, casein and soy protein on rumen microbial synthesis in terms of rumen microbial synchronization. The urea treatment showed the highest pH value. Ammonia nitrogen concentration was rapidly increased after feeding and not significantly different in the urea treatment (13.53 mg/100 ml). Protozoa numbers were not significantly different for soy protein and casein treatment compared to urea treatments during incubation. The average concentration of total VFA (mMol) was not detected with significant difference among treatments, but iso-butyrate production showed the highest for soy protein treatment among treatments (p<0.001). The lowest concentration in total iso-acids (iso-butyrate and iso-valerate) production was observed in urea treatment. The soy protein treatment showed no significantly change in acetate/propionate. The amounts of dry matter (DM) out flow showed no significant difference among treatments. Organic matter (OM) flow was the highest for urea treatments and the lowest for casein treatment (p<0.03). The nitrogen flow for casein treatment was not significantly different from other treatments. The efficiency of microbial protein synthesis in terms of microbial nitrogen (MN) synthesis (g MN/kg ADOM) digested in the rumen was highest for casein treatment (58.53 g MN/kg ADOM) compared to soy protein and urea (p<0.05). This result suggests that rumen ammonia releasing rate may influence on microbial protein synthesis in the rumen.