• Title/Summary/Keyword: Treated wastewater

Search Result 593, Processing Time 0.027 seconds

Analysis of Wastewater Reuse Effect on Field-Scale Water Quality (하수처리수의 농업용수 재이용에 따른 포장단위 수질영향 분석)

  • Seong, Choung-Hyun;Kim, Sung-Jae;Kim, Sung-Min;Kim, Sang-Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.4
    • /
    • pp.59-65
    • /
    • 2011
  • The purpose of this study was to analyze the water quality change when wastewater applied to study paddy fields. CREAMS-PADDY (Chemical, Runoff and Erosion from Agricultural Management System) model was used to estimate the field-scale water quality. Simulated results were compared with observed data monitored from Byeongjeom study paddy fields which is located near the Suwon sewage treatment plant in Gyeonggi-do. Significance analysis was performed for the three different irrigation water quality level and five fertilizer reduction scenarios using LSD (Least Significant Difference) and DMRT (Duncan's Multiple Range Test). Total nitrogen was found to be significant for both irrigation water quality level and fertilizer reduction while total phosphorus was not. Annual drainage load for total nitrogen was reduced by 66~92 % compared to irrigation load when treated wastewater irrigated to study paddy fields from 2002 to 2007. Total phosphorus was reduced by 70~86 %.

Optimum Conditions of Super-critical Water Oxidation Process for Treatment of Slurry Piggery Wastewater (슬러리형 돈사분뇨처리를 위한 초임계수 산화공정의 최적 조건)

  • Kim, Ean-Ho;Seo, Jeoung-Yoon
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.4
    • /
    • pp.333-341
    • /
    • 2008
  • In this study, the possibility and the optimal conditions for treating slurry type piggery wastewater using supercritical water oxidation were tested in the laboratory. The results could be summarized as follows; The slurry type piggery wastewater, which was diluted 50 times, was treated most effectively at the pressure of 300 bar, the temperature of $550^{\circ}C$ and the residence time of 10 minutes. The air saturated water was injected, as an oxidizing agent, and the removal efficiencies of $COD_{Cr}$, T-N, $NH_4^+$-N and T-Pattheoptimal conditions were 92, 40, 59 and 100%, respectively. Therefore, analte rnativemea suremu stbetaken to improve theremo valefficiency of the nitrogen compounds.

Reaction Characteristics and Kinetics for Treatment of Wastewater Containing Phenol (Phenol 함유 폐수의 처리를 위한 반응 특성과 속도론)

  • Kang, Sun-Tae;Kim, Jeong-Mog
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.3
    • /
    • pp.124-130
    • /
    • 1997
  • Wastewater containing phenol was treated using Pseudomonas sp. B3 in continuous reactor, reaction characteristics and kinetics according to variation of volumetric loading rate in continuous reactor were studied. The removal efficiencies of phenol were more than 99% at the whole range of experiment, and those of COD were 97% at the volumetric loading rate, $0.96kg/m^3{\cdot}d$ and 88% at $3.0kg/m^3{\cdot}d$, respectively. Kinetics constants of $q_m$, $K_s$, Y and $K_d$ were obtained 0.901 l/d, 0.620mg/l, 0.659 and 0.219 l/d, respectively. As compared with to constants of standard activated sludge process, these constants were remarkably different because of toxicity and inhibition of phenol to microbes. And also, kinetics constants of oxygen utilization, a, and b, were shown 0.384 kg $O_2/kg$ phenol and 0.029 l/d.

  • PDF

Byproducts from Piggery Wastewater Treatment for the Sustainable Soil Amendment and Crop Production

  • Yang, Jae E.;Kim, Jeong-Je;Shin, Young-Oh;Shin, Myung-Kyo;Park, Yong-Ha
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.3
    • /
    • pp.140-145
    • /
    • 1999
  • Livestock manure is generally beneficial to soil and crop production when appropriate amount is applied, but excessive application may be detrimental to soil and water environments. A proper protocol of livestock waste treatment is required to manage the quality of soil and water. A trickling filter system using rice straw media was employed to treat piggery wastewater from small-scaled livestock farms as an alternative to the currently available methods. Batches of piggery wastewater were treated with this system, and the byproducts of rice straw media and trickling filtrate were applied to the soil with cultivating rye (Secale cereale L.). Objective of this research was to characterize these byproducts for the sustainable soil amendments and rye production. Both the treated straw medium and filtrate were proven to be effective organic fertilizers for rye plant development, with the enhanced but balanced absorption of nutrients. The synergistic effects of filtrate in addition to straw application did not show, but the filtrate appeared to lead to a higher water content of the plant. No specific nutrient deficiency or toxicity symptom was shown due to the salts derived from the byproducts applied. Chemical parameters of the soil quality were significantly improved with the application of straw medium either with or without the filtrate. Judging from parameters relating to the salt accumulations, such as sodium adsorption ratio (SAR), electrical conductivity (EC), exchangeable sodium percentage (ESP), potassium adsorption ratio (KAR), and residual P concentrations, the byproducts from piggery wastewater exhibited no detrimental effects on soil quality within the ranges of treatments used. In addition to the effectiveness of the rice straw trickling filter system for the small-scaled swine farms, both rice straw medium and filtrate could be recycled for the sustainable soil amendment and plant nutrition.

  • PDF

Improvement of Organic Substances Indicators by Linked Ultra Violet-Advanced Oxidation Process After Ozonation for Anaerobic Digested Wastewater (소화탈리액 대상 오존 전처리와 Ultra Violet-Advanced Oxidation Process 연계 처리를 통한 유기물질 지표 개선)

  • Jaiyeop Lee;Jesmin Akter;Ilho Kim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.5
    • /
    • pp.253-259
    • /
    • 2023
  • Bioreactors are devices used by sewage treatment plants to process sewage and which produce active sludge, and sediments separated by solid-liquid are treated in anaerobic digestion tanks. In anaerobic digestion tanks, the volume of active sludge deposits is reduced and biogas is produced. After dehydrating the digestive sludge generated after anaerobic digestion, anaerobic digested wastewater, which features a high concentration of organic matters, is generated. In this study, the decomposition of organic carbon and nitrogen was studied by advanced oxidation process. Ozone-microbubble flotation process was used for oxidation pretreatment. During ozonation, the TOC decreased by 11.6%. After ozone treatment, the TOC decreased and the removal rate reached 80.4% as a result of the Ultra Violet-Advanced Oxidation Process (UV-AOP). The results with regard to organic substances before and after treatment differed depending on the organic carbon index, such as CODMn, CODCr, and TOC. Those indexes did not change significantly in ozone treatment, but decreased significantly after the UV-AOP process as the linkage treatment, and were removed by up to 39.1%, 15.2%, and 80.4%, respectively. It was confirmed that biodegradability was improved according to the ratio of CODMn to TOC. As for the nitrogen component, the ammonia nitrogen component showed a level of 3.2×102 mg/L or more, and the content was maintained at 80% even after treatment. Since most of the contaminants are removed from the treated water and its transparency is high, this water can be utilized as a resource that contains high concentrations of nitrogen.

Livestock Wastewater Treatment by a Constructed Wetland (인공습지를 이용한 축산폐수의 처리)

  • Park, Jae-hong;Choi, Eui-so;Cho, Il-hyoung
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.2
    • /
    • pp.157-162
    • /
    • 2004
  • Constructed wetlands are considered as an important tool for wastewater treatment, wastewater management and flooding control. In addition, one of the most promising technologies for application in many countries seems to be constructed wetlands, due to their properties such as utilization of natural processes, simple construction, operation and maintenance, process stability, cost effectiveness, etc. This study considered possibility of treatment of livestock wastewater using a constructed wetland. The removal efficiencies of $COD_{cr}$, TOC, TN, TP, SS, and color were 97.6%, 96.6%, 97.0%, 96.7%, 99.0%, and 85.6%, respectively. In particular, SS was completely removed. However, $Cl^{-}$ concentration of the constructed wetland effluent was higher than that in influent. In conclusion, constructed wetlands could be applied to livestock wastewater treatment if $Cl^{-}$ would be properly treated. Further, it needs time for stabilization to reduce the pollutants which were accumulated in soil.

A Study on the Water Quality Management Using the Rotifers (윤충류를 활용한 하천 및 연안의 수질관리에 관한 연구)

  • Kim, Jeong-Sook
    • Journal of Environmental Science International
    • /
    • v.16 no.2
    • /
    • pp.227-232
    • /
    • 2007
  • Water pollution in enclosed water bodies such as lake and river has become a serious problem over the world. Domestic wastewater is responsible for more than 60 % pollution load in public water area in Korea. Effluent of the treated domestic wastewater at low removal level is abundantly fed rivers and lakes and thus be an serious cause of lake pollution. Therefore, effective implement of domestic wastewater treatment in basin of lake and river must be prepared. The septic tank is one of the effective domestic wastewater treatment equipment and used in individual treatment for a unit of household, The purpose of septic tank as biological treatment system is simultaneously to remove BOD, T-N, T-P and reduce turbidity from influent. Accordingly, the appropriate control of functional microorganisms is important subject for the establishment of stability and economy of the biological treatment method. Especially, microanimals as a high-ranked microorganisms of food-chain are important, because microanimals control the other microorganisms especially various bacteria and effect on function of treatment. Therefore, it is necessary that functional predator like rotifers are attached in wastewater treatment process. In this study, the methods for attachment high density the rotifer to and improvement of transparency in the effluence by a dense rotifer was examined using laboratory scale biological treatment reactor simulated septic tank and real one.

A study on new treatment chemical for leather wastewater; I. Development of new organic coagulant (새로운 피혁폐수 처리제에 관한 연구; I. 새로운 유기 응결제의 개발)

  • Jung, Maeng-Joon;Lee, Chul-Jae;Han, Sung-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.4
    • /
    • pp.323-330
    • /
    • 2006
  • As the interest in environmental pollution resulting from recent industrial development is converging, wastewater treatment problem of dying processing is one of important pending issue. Usually, flow mediation earth and settling pond etc. of processing plant to handle water or wastewater. Mediation is the wastewater that flowed past settling pond than material of heavy particles, water weight colloid particles that big solids are removed but are suspensibility material settlement exclusion impossible. So, we need flocculation and coagulation action to remove materials from this colloid state. For flocculation and coagulation action chemical agents to add back, addition of chemical agents forms floc of could settle size. That is, shorten the sedimentation time and quality of processing water because promoting sedimentation doing to do fines or suspended solids and colloid can materials large size and also, flocculation to annex efficiency of filtration augment. Therefore, I executed this research to prove that improving organic matter and chromaticity of treated water of processing epochally using organic coagulant informed positive ion co-polymerization superior in color wastewater through this research.

  • PDF

A Study on the Foam Wastewater Treatment and Foam Collection by Inhalation Force at the Outlet of Power Plants (발전소 방류구의 흡입력을 이용한 거품수거 및 거품액 처리 연구)

  • Jang, Heui-Su;Mun, Gyeng-Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.5
    • /
    • pp.496-499
    • /
    • 2005
  • Power Plant is requested, by environmental bodies and fisherman, to correct the pollution of coastal area due to the outflow of foam from the outlet of the power plants. Foam wastewater cause a lot of environmental problems, expecially in aesthetic points of view. Therefore, It is needed to be collect from the stream into nearby ocean, and the collected foams should be treated before being discharged into nearby ocean. The most effective and feasible treatment method researched for the effective treatment of foam wastewater generated at the power plants. The result of the test is confirmed with collecting Foam wastewater by inhalation force. The treatment pilot ($3m^3/hr$) collected wastewater was operated by Biological degradation method(Aerobic/anaerobic Processes) for approximately two months. It was removed SS, COD, nutrient(T-P, T-N), etc. The System is expected successfully by Minimizing the operating costs such as electricity, repair expenses, chemicals and supplies expenses.

Papermill Wastewater Treatment by Indirect Aerated Submerged Biofilter (호기성 침지여상에 의한 제지폐수처리)

  • Won, Chan-Hee;Kwon, Young-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.8 no.1
    • /
    • pp.44-52
    • /
    • 1994
  • The purpose of this experimental research was focused to improve the quality of the effluent and the yielded sludge when the papermill wastewater was treated by the indirect aerated submerged biofilter as a second treatment method of papermill wastewater. Changing the various experimental factors(Nutrient additions or not, HRT, F/M ratio, recirculation ratio, etc) with indirect aerated biofilter, the results obtained are as follows. 1. Because of the microbes concentration could be sustained to $9,000mg/l$ in submerged biofilter and then the volumetric organic loads could be increased to $2.7kg-BOD/m^3/day$(that of activated sludge is $0.8kg-BOD/m^3/day$), the reactor volume can be reduced to one third of the activated sludge treatment. 2. Because of the yield coefficient(Y) and the endogenous decay coefficient(kd) were revealed 0.4 and 0.07/d, the yielded sludge volume was reduced by for compared with that of the activated sludgg process. 3. The concentration of the sloughed sludge in the reactor was 2.62~4.01%, so the thickener could be omitted in the papermill wastewater sludge treatment process. 4. When the operating was conducted at HRT of 4hrs, the treatment efficiencies of BOD and COD were obtained 80% and 70%, Therefore operating time can be reduced to one half of the activated sludge treatment.

  • PDF