• Title/Summary/Keyword: Traveling Salesman Problem

Search Result 179, Processing Time 0.023 seconds

A New Heuristic Algorithm for the Asymmetric Traveling Salesman Problem Using 3-Opt (비대칭 외판원 문제에서 3-Opt를 응용한 새로운 발견적 알고리듬)

  • 권상호;강맹규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.52
    • /
    • pp.97-107
    • /
    • 1999
  • The asymmetric traveling salesman problem is a representative NP-Complete problem. Polynomial algorithm for this problem has not been yet found. So, many heuristic methods have been researched in this problem. We need heuristic methods that produce good answers for some larger problems in reasonable times. 3-opt is well known for the effective local-search heuristic method. It has been used in many applications of the asymmetric traveling salesman problem. This paper discusses 3-opt's properties and ineffective aspects and presents a highly effective heuristic method. 3-opt does not consider good arcs(shorter distance or little cost). This paper presents a fast heuritic algorithm compared with 3-opt by inserting good arcs and deleting related arcs later.

  • PDF

An Iterative Insertion Algorithm and a Hybrid Meta Heuristic for the Traveling Salesman Problem with Time Windows (시간제약이 있는 외판원 문제를 위한 메타휴리스틱 기법)

  • Kim, Byung-In
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.1
    • /
    • pp.86-98
    • /
    • 2007
  • This paper presents a heuristic algorithm for the traveling salesman problem with time windows (TSPTW). Aniterative insertion algorithm as a constructive search heuristic and a hybrid meta heuristic combining simulatedannealing and tabu search with the randomized selection of 2-interchange and a simple move operator as animproving search heuristic are proposed, Computational tests performed on 400 benchmark problem instancesshow that the proposed algorithm generates optimal or near-optimal solutions in most cases. New best knownheuristic values for many benchmark problem sets were obtained using the proposed approach.

S-MINE Algorithm for the TSP (TSP 경로탐색을 위한 S-MINE 알고리즘)

  • Hwang, Sook-Hi;Weon, Il-Yong;Ko, Sung-Bum;Lee, Chang-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.18B no.2
    • /
    • pp.73-82
    • /
    • 2011
  • There are a lot of people trying to solve the Traveling Salesman Problem (TSP) by using the Meta Heuristic Algorithms. TSP is an NP-Hard problem, and is used in testing search algorithms and optimization algorithms. Also TSP is one of the models of social problems. Many methods are proposed like Hybrid methods and Custom-built methods in Meta Heuristic. In this paper, we propose the S-MINE Algorithm to use the MINE Algorithm introduced in 2009 on the TSP.

Determination of Arc Candidate Set for the Asymmetric Traveling Salesman Problem (비대칭 외판원문제에서 호의 후보집합 결정)

  • 김헌태;권상호;지영근;강맹규
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.2
    • /
    • pp.129-138
    • /
    • 2003
  • The traveling salesman problem (TSP) is an NP-hard problem. As the number of nodes increases, it takes a lot of time to find an optimal solution. Instead of considering all arcs, if we select and consider only some arcs more likely to be included in an optimal solution, we can find efficiently an optimal solution. Arc candidate set is a group of some good arcs. For the Lack of study in the asymmetric TSP. it needs to research arc candidate set for the asymmetric TSP systematically. In this paper, we suggest a regression function determining arc candidate set for the asymmetric TSP. We established the function based on 2100 experiments, and we proved the goodness of fit for the model through various 787problems. The result showed that the optimal solutions obtained from our arc candidate set are equal to the ones of original problems. We expect that this function would be very useful to reduce the complexity of TSP.

Perturbation Using Out-of-Kilter Arc of the Asymmetric Traveling Salesman Problem (비대칭 외판원문제에서 Out-of-Kilter호를 이용한 Perturbation)

  • Kwon Sang Ho
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.2
    • /
    • pp.157-167
    • /
    • 2005
  • This paper presents a new perturbation technique for developing efficient iterated local search procedures for the asymmetric traveling salesman problem(ATSP). This perturbation technique uses global information on ATSP instances to speed-up computation and to improve the quality of the tours found by heuristic method. The main idea is to escape from a local optima by introducing perturbations on the out-of-kilter arcs in the problem instance. For a local search heuristic, we use the Kwon which finds optimum or near-optimum solutions by applying the out-of-kilter algorithm to the ATSP. The performance of our algorithm has been tested and compared with known method perturbing on randomly chosen arcs. A number of experiments has been executed both on the well-known TSPLIB instances for which the optimal tour length is known, and on randomly generated Instances. for 27 TSPLIB instances, the presented algorithm has found optimal tours on all instances. And it has effectively found tours near AP lower bound on randomly generated instances.

A New Structure of Self-Organizing Neural Networks for the Euclidean Traveling Salesman Problem (유클리디안 외판원 문제를 위한 자기조직화 신경망의 새로운 구조)

  • 이석기;강맹규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.61
    • /
    • pp.127-135
    • /
    • 2000
  • This paper provides a new method of initializing neurons used in self-organizing neural networks and sequencing input nodes for applying to Euclidean traveling salesman problem. We use a general property that in any optimal solution for Euclidean traveling salesman problem, vertices located on the convex hull are visited in the order in which they appear on the convex hull boundary. We composite input nodes as number of convex hulls and initialize neurons as shape of the external convex hull. And then adapt input nodes as the convex hull unit and all convex hulls are adapted as same pattern, clockwise or counterclockwise. As a result of our experiments, we obtain l∼3 % improved solutions and these solutions can be used for initial solutions of any global search algorithms.

  • PDF

Performance Evaluation of Genetic Algorithm for Traveling Salesman Problem (외판원문제에 대한 유전알고리즘 성능평가)

  • Kim, Dong-Hun;Kim, Jong-Ryul;Jo, Jung-Bok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.783-786
    • /
    • 2008
  • 외판원문제(Traveling Salesman problem: TSP)는 전형적인 조합최적화 문제로 위치하는 n개의 모든 지점을 오직 한번씩만 방문하는 순회경로를 결정하는 과정에서 순회비용 또는 순회거리를 최소화한다. 따라서 본 논문에서는 종래의 NP-hard문제로 널리 알려진 TSP를 해결하기 위해서 메타 휴리스틱기법 중에서 가장 널리 이용되고 있는 유전 알고리즘(Genetic Algorithm: GA)을 이용한다. 마지막으로, 유전 알고리즘을 이용해 외판원문제에 적합한 성능을 보이는 유전 연산자를 찾아내기 위해 수치 실험을 통해 그 성능에 대한 평가를 한다.

  • PDF

Multi-Dimensional Traveling Salesman Problem Scheme Using Top-n Skyline Query (Top-n 스카이라인 질의를 이용한 다차원 외판원 순회문제 기법)

  • Jin, ChangGyun;Oh, Dukshin;Kim, Jongwan
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.1
    • /
    • pp.17-24
    • /
    • 2020
  • The traveling salesman problem is an algorithmic problem tasked with finding the shortest route that a salesman visits, visiting each city and returning to the started city. Due to the exponential time complexity of TSP, it's hard to implement on cases like amusement park or delivery. Also, TSP is hard to meet user's demand that is associated with multi-dimensional attributes like travel time, interests, waiting time because it uses only one attribute - distance between nodes. This paper proposed Top-n Skyline-Multi Dimension TSP to resolve formerly adverted problems. The proposed algorithm finds the shortest route faster than the existing method by decreasing the number of operations, selecting multi-dimensional nodes according to the dominance of skyline. In the simulation, we compared computation time of dynamic programming algorithm to the proposed a TS-MDT algorithm, and it showed that TS-MDT was faster than dynamic programming algorithm.

The Maximum Scatter Travelling Salesman Problem: A Hybrid Genetic Algorithm

  • Zakir Hussain Ahmed;Asaad Shakir Hameed;Modhi Lafta Mutar;Mohammed F. Alrifaie;Mundher Mohammed Taresh
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.193-201
    • /
    • 2023
  • In this paper, we consider the maximum scatter traveling salesman problem (MSTSP), a travelling salesman problem (TSP) variant. The problem aims to maximize the minimum length edge in a salesman's tour that travels each city only once in a network. It is a very complicated NP-hard problem, and hence, exact solutions can be found for small sized problems only. For large-sized problems, heuristic algorithms must be applied, and genetic algorithms (GAs) are found to be very successfully to deal with such problems. So, this paper develops a hybrid GA (HGA) for solving the problem. Our proposed HGA uses sequential sampling algorithm along with 2-opt search for initial population generation, sequential constructive crossover, adaptive mutation, randomly selected one of three local search approaches, and the partially mapped crossover along with swap mutation for perturbation procedure to find better quality solution to the MSTSP. Finally, the suggested HGA is compared with a state-of-art algorithm by solving some TSPLIB symmetric instances of many sizes. Our computational experience reveals that the suggested HGA is better. Further, we provide solutions to some asymmetric TSPLIB instances of many sizes.

Flow based heuristics for the multiple traveling salesman problem with time windows

  • Lee, Myung-Sub
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1993.04a
    • /
    • pp.354-366
    • /
    • 1993
  • In this paper, new algorithms for solving the multiple traveling salesman problem with time windows are presented. These algorithms are based on the flow based algorithms for solving the vehicle scheduling problem. Computational results on problems up to 750 customers indicate that these algorithms produce superior results to existing heuristic algorithms for solving the vehicle routing problems when the time windows are 'tight enough' where 'tight enough' is based on a metric proposed by desrosiers et al.(1987).

  • PDF