• Title/Summary/Keyword: Trapping characteristics

Search Result 217, Processing Time 0.024 seconds

TCAD Simulation of Silicon Pillar Array Solar Cells

  • Lee, Hoong Joo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.65-69
    • /
    • 2017
  • This paper presents a Technology-CAD (TCAD) simulation of the characteristics of crystalline Si pillar array solar cells. The junction depth and the surface concentration of the solar cells were optimized to obtain the targeted sheet resistance of the emitter region. The diffusion model was determined by calibrating the emitter doping profile of the microscale silicon pillars. The dimension parameters determining the pillar shape, such as width, height, and spacing were varied within a simulation window from ${\sim}2{\mu}m$ to $5{\mu}m$. The simulation showed that increasing pillar width (or diameter) and spacing resulted in the decrease of current density due to surface area loss, light trapping loss, and high reflectance. Although increasing pillar height might improve the chances of light trapping, the recombination loss due to the increase in the carrier's transfer length canceled out the positive effect to the photo-generation component of the current. The silicon pillars were experimentally formed by photoresist patterning and electroless etching. The laboratory results of a fabricated Si pillar solar cell showed the efficiency and the fill factor to be close to the simulation results.

  • PDF

Hot-Carrier Induced GIDL Characteristics of PMOSFETs under DC and Dynamic Stress (직류 및 교류스트레스 조건에서 발생된 Hot-Carrier가 PMOSFET의 누설전류에 미치는 영향)

  • 류동렬;이상돈;박종태;김봉렬
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.12
    • /
    • pp.77-87
    • /
    • 1993
  • PMOSFETs were studied on the effect of Hot-Carrier induced drain leakage current (Gate-Induced-Drain-Leakage). The result turned out that change in Vgl(drain voltage where 1pA/$\mu$m of drain leadage current flows) was largest in the Channel-Hot-Hole(CHH) injection condition and next was in dynamic stress and was smallest in electron trapping (Igmax) condition under various stress conditions. It was analyzed that if electron trapping occurrs in the overlap region of gate and drain(G/D), it reduces GIDL current due to increment of flat-band voltage(Vfb) and if CHH is injected, interface states(Nit) were generated and it increases GIDL current due to band-to-defect-tunneling(BTDT). Especially, under dynamic stress it was confirmed that increase in GIDL current will be high when electron injection was small and CHH injection was large. Therefore as applying to real circuit, low drain voltage GIDL(BTDT) was enhaced as large as CHH Region under various operating voltage, and it will affect the reliablity of the circuit.

  • PDF

A Study of the Acclerated Degradation Phenomena on th Amorphous Silicon Thin Film Transistors with Multiple Stress (복합 스트레스에 의한 비정질 실리콘 박막 트랜지스터에서의 가속열화 현상 연구)

  • 이성규;오창호;김용상;박진석;한민구
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.7
    • /
    • pp.1121-1127
    • /
    • 1994
  • The accelerated degradation phenomena in amorphous silicon thin film transistors due to both electrical stress and visible light illumination under the elevated temperature have been investigated systematically as a function of gate bias, light intensity, and stress time. It has been found that, in case of electrical stress, the thrshold voltage shifts of a-Si:H TFT's may be attributed to the defect creation process at the early stage, while the charge trapping phenomena may be dominant when the stressing periods exceed about 2 hours. It has been also observed that the degradation in the device characteristics of a-Si:H TFT's is accelerated due to multiple stress effects, where the defect creation mechanism may be more responsible for the degradation rather than the charge trapping mechanism.

Photoluminescence characteristics of ZnTe single crystal thin films substi-tuted by sulfur (Sulfur에 의하여 치환된 ZnTe 단결정 박막의 광발광 특성)

  • 최용대
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.6
    • /
    • pp.279-283
    • /
    • 2003
  • In this study, ZnTe : S single crystal thin films substituted by sulfur were grown on GaAs (100) substrates by hot-wall epitaxy. The photoluminescence (PL) characteristics of ZnTe : S single crystal thin films was measured to investigate the effects due to sulfur atoms in the ZnTe layer. The Peak of 2.339 eV identified as the isoelectronic center was observed in low temperature PL spectrum, but PL spectra which the origin had not been well-explained were not observed. Temperature dependence of PL intensities of the light hole free exciton was explained by extrinsic self-trapping. Besides it is reported that the emission lines near absorption edge at room temperature were observed.

A Study on Characteristics of Wet Oxide Gate and Nitride Oxide Gate for Fabrication of NMOSFET (NMOSFET의 제조를 위한 습식산화막과 질화산화막 특성에 관한 연구)

  • Kim, Hwan-Seog;Yi, Cheon-Hee
    • The KIPS Transactions:PartA
    • /
    • v.15A no.4
    • /
    • pp.211-216
    • /
    • 2008
  • In this paper we fabricated and measured the $0.26{\mu}m$ NMOSFET with wet gate oxide and nitride oxide gate to compare that the charateristics of hot carrier effect, charge to breakdown, transistor Id_Vg curve, charge trapping, and SILC(Stress Induced Leakage Current) using the HP4145 device tester. As a result we find that the characteristics of nitride oxide gate device better than wet gate oxide device, especially hot carrier lifetime(nitride oxide gate device satisfied 30 years, but the lifetime of wet gate oxide was only 0.1 year), variation of Vg, charge to breakdown, electric field simulation and charge trapping etc.

Electrical Characteristics of Ambipolar Thin Film Transistor Depending on Gate Insulators (게이트 절연특성에 의존하는 양방향성 박막 트랜지스터의 동작특성)

  • Oh, Teresa
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1149-1154
    • /
    • 2014
  • To observe the tunneling phenomenon of oxide semiconductor transistor, The Indium-gallum-zinc-oxide thin film transistors deposited on SiOC as a gate insulator was prepared. The interface characteristics between a dielectric and channel were changed in according to the properties of SiOC dielectric materials. The transfer characteristics of a drain-source current ($I_{DS}$) and gate-source voltage ($V_{GS}$) showed the ambipolar or unipolar features according to the Schottky or Ohmic contacts. The ambipolar transfer characteristics was obtained at a transistor with Schottky contact in a range of ${\pm}1V$ bias voltage. However, the unipolar transfer characteristics was shown in a transistor with Ohmic contact by the electron trapping conduction. Moreover, it was improved the on/off switching in a ambipolar transistor by the tunneling phenomenon.

Impact of Gamma Irradiation Effects on IGBT and Design Parameter Considerations

  • Lho, Young-Hwan
    • ETRI Journal
    • /
    • v.31 no.5
    • /
    • pp.604-606
    • /
    • 2009
  • The primary dose effects on an insulated gate bipolar transistor (IGBT) irradiated with a $^{60}Co$ gamma-ray source are found in both of the components of the threshold shifting due to oxide charge trapping in the MOS and the reduction of current gain in the bipolar transistor. In this letter, the IGBT macro-model incorporating irradiation is implemented, and the electrical characteristics are analyzed by SPICE simulation and experiments. In addition, the collector current characteristics as a function of gate emitter voltage, VGE, are compared with the model considering the radiation damage of different doses under positive biases.

Combustion Characteristics of Heavy Fuel Oil-water Emulsion

  • Kim Houng-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.88-92
    • /
    • 2006
  • This study is intended to check the flame temperature to raise in burning grade C heavy fuel oil and emulsion fuel oil in a boiler and to measure the concentration of Dry Shoot(DS) and Soluble Organic Fraction(SOF) after collecting the Particulate Matters (PM). The flames temperature in boiler was measured by burning grade C heavy oil and oil-water emulsion (C heavy oil $70\%\;and\;30\%$ of water) Combustion characteristics of two fuels was also compared by trapping particulate matters (PM) in exhaust gas and measuring the generated quantities of DS and SOF in fuel gas.

Characteristics of $TiO_2$ Ceramic Electrode for the Photoelectrochemical Conversion (광전기 화학 변환을 위한 $TiO_2$ 세라믹 전극의 특성)

  • 윤기현;김종선;윤상옥
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.4
    • /
    • pp.356-360
    • /
    • 1983
  • The photocurrent vs. potential characteristics of the $TiO_2$ ceramic electrodes have been investigated as functions of numerous variables including sample purity hydrogen reduction condition and pH of the electrolyte. The difference inphotoresponse between 99.99% and 98.5% $TiO_2$ electrodes was due to electron trapping effect. As the hydrogen reducing temperature of $TiO_2$ electrodes were increased the photocurrent was also increased to certain condition and then decreased. These results can be explained by the behavior of oxygen vacancies.

  • PDF