• Title/Summary/Keyword: Transverse shear stress

Search Result 259, Processing Time 0.023 seconds

Space grid analysis method in modelling shear lag of cable-stayed bridge with corrugated steel webs

  • Ma, Ye;Ni, Ying-Sheng;Xu, Dong;Li, Jin-Kai
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.549-559
    • /
    • 2017
  • As few multi-tower single-box multi-cell cable-stayed bridges with corrugated steel webs have been built, analysis is mostly achieved by combining single-girder model, beam grillage model and solid model in support of the design. However, such analysis methods usually suffer from major limitations in terms of the engineering applications: single-girder model fails to account for spatial effect such as shear lag effect of the box girder and the relevant effective girder width and eccentric load coefficient; owing to the approximation in the principle equivalence, the plane grillage model cannot accurately capture shear stress distribution and local stress state in both top and bottom flange of composite box girder; and solid model is difficult to be practically combined with the overall calculation. The usual effective width method fails to provide a uniform and accurate "effective length" (and the codes fail to provide a unified design approach at those circumstance) considering different shear lag effects resulting from dead load, prestress and cable tension in the construction. Therefore, a novel spatial grid model has been developed to account for shear lag effect. The theoretical principle of the proposed spatial grid model has been elaborated along with the relevant illustrations of modeling parameters of composite box girder with corrugated steel webs. Then typical transverse and longitudinal shear lag coefficient distribution pattern at the side-span and mid-span key cross sections have been analyzed and summarized to provide reference for similar bridges. The effectiveness and accuracy of spatial grid analysis methods has been finally validated through a practical cable-stayed bridge.

Crack Modelling to Determine Concrete Contribution to Shear Resistance (콘크리트 전단 기여분 결정을 위한 균열묘사 방법)

  • 조순호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.872-877
    • /
    • 2003
  • The fixed-angle based modified compression field theory (MCFT) was developed to include the slip deformation across the crack, thereby allowing for the non-coincident directions of the principal strain and stress. To investigate the significance of crack modelling on the analysis, a series of tests on beams without transverse reinforcement was predicted by both rotating- and fixed-angle crack models within the frame of the MCFT. The results predicted by the fixed-angle MCFT were comparable to those by the rotating-angle MCFT when the initial crack angle of 45deg. and the related friction law are used.

  • PDF

Refined Decoupled Stress Analysis for Thermo-piezoelectric Composite Plate (열-전기-기계 하중에서의 복합재 평판의 응력해석)

  • 오진호;조맹효
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.46-49
    • /
    • 2000
  • A decoupled thermo-~lezoelectric-mechanical model of composite laminates with surface bonded piezoelectric actuators, subjected to externally applied load, temperature change load, electric field load is developed. The governing differential equations are obtained by applying the principle of free energy and variational techniques. A higher order zigzag theory displacement field is employed to accurately capture the transverse shear and normal effects in laminated composite plates of arbitrary thickness.

  • PDF

Estimation of Interfacial Adhesion through the Micromechanical Analysis of Failure Mechanisms in DLC Film

  • Jeong, Jeung-Hyun;Park, Hae-Seok;Ahn, Jeong-Hoon;Dongil Kwon
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.73-81
    • /
    • 1997
  • In this paper, it is intended to present more reproducible and quantitative method for adhesion assemssement. In scratch test, micromechanical analysis on the stress state beneath the indenter was carried out considering the additional blister field. The interface adhesion was quantified as work of adhesion through Griffith energy approach on the basis of the analyzed stress state. The work of adhesion for DLC film/WC-Co substrate calculated through the proposed analysis shows the identical value regardless of distinctly different critical loads measured with the change of film thickness and scratching speed. On the other hand, uniaxial loading was imposed on DCL film/Al substrate, developing the transverse film cracks perpendicular to loading direction. Since this film cracking behavior depends on the relative magnitude of adhesion strength to film fracture strength, the quantification of adhesion strength was given a trial through the micromechanical analysis of adhesion-dependence of film cracking patterns. The interface shear strength can be quantified from the measurement of strain $\varepsilon$s and crack spacing $\lambda$ at the cessation of film cracking.

  • PDF

A Study on the Plane Stress Problem of Composite Laminated Annular Elements Using Finite Difference Method (유한차분법을 이용한 복합적층 원형곡선요소의 평면응력문제 연구)

  • Lee, Sang Youl;Yhim, Sung Soon;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.65-79
    • /
    • 1997
  • Composite materials are consist of two or more different materials to produce desirable properties for structural strength. Because of their superiority in strength, corrosion resistance, and weight reduction, they are used extensively as structural members. The objective of this study is to present the effectivness of the laminated composite elements by analyzing in-plane displacement and stress of the anisotropic laminated annular elements. Anisotropic laminated structures are very difficult to analyze and apply, compared with isotropic and orthotropic cases for arbitrary boundaries and fiber angle -ply. Boundary conditions for the examples used in this study consist of two opposite edges clamped and the other two edges free, and finite difference method is used in this study for numerical analysis. From the numerical result, it is found that the program used in this study can be used to obtain the displacement of the straight beams considering it's transverse shear deformation as well as anisotropic laminated elements. Several numerical examples show the advantages of the stiffness increase when the angle-ply composite materials are used. Therefore it gives a guide in deciding how to make use of fiber's angle for the subtended angle, load cases, and boundary conditions.

  • PDF

Verification of Reinforcing Arrangement Error in Precast Concrete Shear Walls Using BIM and Presentation of Flexural Ductility Model (BIM을 이용한 프리캐스트 콘크리트 전단벽의 배근 오류 검증 및 휨 연성 모델 제시)

  • Ju-Hyun Mun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.27-36
    • /
    • 2024
  • This study established a BIM procedure considering manufacturing errors in the production process, and evaluated the flexural ductility of precast all-lightweight aggregate concrete special shear walls (PLASWs) with spliced sleeve technique. In the production process, the concrete cover thickness of PALSW was on average 1.28 times greater than the cross-sectional details of the specimen modeled with Revit BIM program. In particular, the bending inner radius of the hoop and inner-cross tie were greater than the designed details. Consequently, the confinement effect of core concrete reduced from 64% to 54% due to the manufacturing errors in the transverse reinforcing bars, resulting in a decrease in the ductility of PALSW by approximately 4.91%. Considering these findings, the BIM of PLASW with spliced sleeve technique should compliment the bending inner radius of the transverse reinforcing bars, and the defined brittleness increase coefficient reflecting the decreased core concrete confining pressure in the stress-strain relationship of confined concrete should be evaluated as 1.8.

Higher Order Zig-Zag Theory for Composite Shell under Thermo-mechanical load (열, 기계 하중을 고려한 지그재그 고차 복합재 쉘 이론)

  • Oh Jin-Ho;Cho Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.217-224
    • /
    • 2005
  • A higher order zig-zag shell theory is developed to refine the predictions of the mechanical and thermal behaviors partially coupled. The in-plane displacement fields are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field through the thickness. Smooth parabolic distribution through the thickness is assumed in the out-of-plane displacement in order to consider transverse normal deformation and stress. The layer-dependent degrees of freedom of displacement fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses. Thus the proposed theory has only seven primary unknowns and they do not depend upon the number of layers. In the description of geometry and deformation of shell surface, all rigorous exact expressions are used. Through the numerical examples of partially coupled analysis, the accuracy and efficiency of the present theory are demonstrated. The present theory is suitable in the predictions of deformation and stresses of thick composite shell under mechanical and thermal loads combined.

  • PDF

Prediction of vibration response of functionally graded sandwich plates by zig-zag theory

  • Simmi, Gupta;H.D., Chalak
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.6
    • /
    • pp.507-523
    • /
    • 2022
  • This study is aimed to accurately predict the vibration response of two types of functionally graded sandwich plates, one with FGM core and another with FGM face sheets. The gradation in FGM layer is quantified by exponential method. An efficient zig-zag theory is used and the zigzag impacts are established via a linear unit Heaviside step function. The present theory fulfills interlaminar transverse stress continuity at the interface and zero condition at the top and bottom surfaces of the plate for transverse shear stresses. Nine-noded C-0 FE having 8DOF/node is utilized throughout analysis. The present model is free from the obligation of any penalty function or post-processing technique and hence is computationally efficient. Numerical results have been presented on the free vibration behavior of sandwich FGM for different end conditions, lamination schemes and layer orientations. The applicability of present model is confirmed by comparing with published results. Several new results are also specified, which will serve as the benchmark for future studies.

Shear strength model for reinforced concrete corbels based on panel response

  • Massone, Leonardo M.;Alvarez, Julio E.
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.723-740
    • /
    • 2016
  • Reinforced concrete corbels are generally used to transfer loads within a structural system, such as buildings, bridges, and facilities in general. They commonly present low aspect ratio, requiring an accurate model for shear strength prediction in order to promote flexural behavior. The model described here, originally developed for walls, was adapted for corbels. The model is based on a reinforced concrete panel, described by constitutive laws for concrete and steel and applied in a fixed direction. Equilibrium in the orthogonal direction to the shearing force allows for the estimation of the shear stress versus strain response. The original model yielded conservative results with important scatter, thus various modifications were implemented in order to improve strength predictions: 1) recalibration of the strut (crack) direction, capturing the absence of transverse reinforcement and axial load in most corbels, 2) inclusion of main (boundary) reinforcement in the equilibrium equation, capturing its participation in the mechanism, and 3) decrease in aspect ratio by considering the width of the loading plate in the formulation. To analyze the behavior of the theoretical model, a database of 109 specimens available in the literature was collected. The model yielded an average model-to-test shear strength ratio of 0.98 and a coefficient of variation of 0.16, showing also that most test variables are well captured with the model, and providing better results than the original model. The model strength prediction is compared with other models in the literature, resulting in one of the most accurate estimates.

Bearing Strength of Hybrid Coupled Shear Wall Connections

  • Park Wan-Shin;Yun Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.1065-1074
    • /
    • 2005
  • Due to lack of information, current design methods to calculate bearing strength of connections are tacit about cases in which hybrid coupled walls have connection details of stud bolts and horizontal ties. In this study, analytical study was carried out to develop model for calculating the connections strength of embedded steel section. The bearing stress at failure in the concrete below the embedded steel coupling beam section is related to the concrete compressive strength and the ratio of the width of the embedded steel coupling beam section to the thickness of the shear walls. Experiments were carried out to determine the factors influencing the bearing strength of the connection between steel coupling beam and reinforced concrete shear wall. The test variables included the reinforcement details that confer a ductile behavior in connection between steel coupling beam and shear wall, i. e., the auxiliary stud bolts attached to the steel beam flanges and the transverse ties at the top and the bottom steel beam flanges. In addition, additional test were conducted to verify the strength equations of the connection between steel coupling beam and reinforced concrete shear wall. The results of the proposed equations in this study are in good agreement with both our test results and other test data from the literature.