• Title/Summary/Keyword: Transverse direction

Search Result 605, Processing Time 0.022 seconds

The Size Effect in Measuring the Fracture Toughness of Rock using Chevron Bend Specimen (암석의 파괴인성 측정에서 나타나는 CB 시험편의 치수효과에 관하여)

  • 김재동;백승규
    • Tunnel and Underground Space
    • /
    • v.2 no.2
    • /
    • pp.251-264
    • /
    • 1992
  • In this study, the size effect in measuring the fracture toughness of rock was investigated using the ISRM Suggested Method for Fracture toughness using Chevron Bend Specimens. Total 58 specimens were prepared with 4 different diameters, 29, 42, 54, 68mm and center cut-chevron notch. In addition to this, to evaluated the effect of anisotropy of Jecheon granite, which is the sample for this study, core drilling direction was adjusted perpendicular(short transverse) and parallel(arrester) to the rift plane in the sample and the measured fracture toughness for each direction were compared. Important results obtained from this study are as follows. Level ll test condition is more adequate than l, because of low data scattering and precision and corrected fracture toughness of Jechoen granite measured and 2.2MPa{{{{ SQRT { m} }}}} for arrester direction with minimum initial crack length 0.7cm. From the relationship between core diameter and initial crack length presented in the ISRM testing method, the specimen diameter should be bigger than 47mm. The fracture toughnesses measured for arrester and short transverse directon show 10% difference. This is to the anisotropy of Jecheon granite possessing rift plane.

  • PDF

Study on Hydraulic Fracturing in Transverse Isotropic Rock Using Bonded Particle Model (입자결합모델을 이용한 횡등방성 암석에서의 수압파쇄 특성 연구)

  • Jung, Jaewoong;Heo, Chan;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.470-479
    • /
    • 2013
  • Hydraulic fracturing is used as a method for promoting the fluid flow in the rock and, in the energy field such as geothermal development and the development of sales gas, many studies has been actively conducted. In many cases, hydraulic fracturing is not performed in isotropic rock and especially in the case of sedimentary rocks, hydraulic fracturing is conducted in the transverse isotropic rock. The direction of the crack growth on hydraulic fracturing does not necessarily coincides with the direction of maximum principal stress in the transverse isotropic rock. Therefore, in this study, bonded particle model with hydro-mechanical coupling analysis was adopted for analyzing the characteristics of hydraulic fracturing in transverse isotropic rock. In addition, experiments of hydraulic fracturing were conducted in laboratory-scale to verify the validity of numerical analysis. In this study, the crack growth and crack patterns showed significant differences depending on the viscosity of injection fluid, the angle of bedding plane and the influence of anisotropy. In the case of transverse isotropic model, the shear crack growth due to hydraulic fracturing appeared prominently.

Determination of the Elbow Transverse Joint Using the Helical Axis Concept and its Application to the Development of a Kinematic Arm Model (나선축 개념을 이용한 팔꿈치 관절의 3차원 회전축 측정과 측정 결과를 반영한 인체 팔 모델의 개발)

  • Woo, Bum-Young;Jung, Eui-S.;Yun, Myung-Hwan
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.1
    • /
    • pp.73-80
    • /
    • 2000
  • To determine the exact direction and location of the human joint in motion is crucial in developing a more accurate human model and producing a more fitting artificial joint. There have been several reports on the biomechanical analysis of the joint to determine the anatomy and movement of joints. However, all the previous researches were made in vitro study, that is, they investigated the passive movement of the joint from cadavers and the suggested location of the joint axis was difficult to make practical applications due to the lack of the direction of joint axis. Also, in many biomechanical models, each joint axis is assumed to lie horizontally or vertically to the adjacent links. Such an assumption causes inherent inaccuracy. In this study, the direction and location of the transverse elbow axis was obtained with respect to the global coordinate system whose origin is on the lateral epicondyle of the humerus. The suggested result based on the global coordinate system lying on the external landmark will be helpful to understand the information of the axis and to make an application. From the experiments conducted for five subjects, the direction and location of the elbow transverse joint was determined for each subject by the helical axis method. A statistical validation was also performed to confirm the result. Finally, the result was applied to develop a simple elbow model which is a part of the kinematic arm model. The simple elbow movement model was developed to validate the significance of the result and the kinematic arm model was able to describe the geometry of any complex linkage system. As a result, the errors incurred from the proposed model were significantly reduced when compared to the ones from the previous approach.

  • PDF

Measurement of Fiber Board Poisson's Ratio using High-Speed Digital Camera

  • Choi, Seung-Ryul;Choi, Dong-Soo;Oh, Sung-Sik;Park, Suk-Ho;Kim, Jin-Se;Chun, Ho-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.324-329
    • /
    • 2014
  • Purpose: The finite element method (FEM) is advantageous because it can save time and cost by reducing the number of samples and experiments in the effort to identify design factors. In computational problem-solving it is necessary that the exact material properties are input for achieving a reliable analysis. However, in the case of fiber boards, it is difficult to measure their cross-directional material properties because of their small thickness. In previous research studies, the Poisson's ratio was measured by analyzing ultrasonic wave velocities. Recently, the Poisson's ratio was measured using a high-speed digital camera. In this study, we measured the transverse strain of a fiber board and calculated its Poisson's ratio using a high-speed digital camera in order to apply these estimates to a FEM analysis of a fiber board, a corrugated board, and a corrugated box. Methods: Three different fiber board samples were used in a uniaxial tensile test. The longitudinal strain was measured using the Universal Testing Machine. The transverse strain was measured using an image processing method. To calculate the transverse strain, we acquired images of the fiber board before the test onset and before the fracture occurred. Acquired images were processed using the image processing program MATLAB. After the images were converted from color to binary, we calculated the width of the fiber board. Results: The calculated Poisson's ratio ranged between 0.2968-0.4425 (Machine direction, MD) and 0.1619-0.1751 (Cross machine direction, CD). Conclusions: This study demonstrates that measurement of the transverse properties of a fiber board is possible using image processing methods. Correspondingly, these processing methods could be used to measure material properties that are difficult to measure using conventional measuring methodologies that employ strain gauge extensometers.

Estimation of Longitudinal Vibration Using Transverse Vibration of a String Subject to Parametric Oscillation (매개변수가진에 종속되는 현의 횡방향 진동을 이용한 종방향 진도의 추정)

  • 김도균;김광준
    • Journal of KSNVE
    • /
    • v.4 no.3
    • /
    • pp.365-375
    • /
    • 1994
  • Periodic longitudinal vibrations of a video and audio tape and the like used for transducing pictures and sounds may be induced by self-excited vibrations which are caused by frictions against the heads and guides, and their eccentricity, noncircularity or irregularity. It is important to analyze the longitudinal vibration of a tape because it causes distortions of a reproduced signal. It is difficult to measure directly the longitudinal vibration. In this paper a method estimating longitudinal vibration using impulse responses in the transverse direction is presented. And, the parameters boundary domain where the transverse and longitudinal vibration can be decoupled is introduced. In the domain where the both vibrations are decoupled, analytic methods using frequency characteristics and transient responses of the transverse vibration, respectively, are presented. The time domain method predicted more exactly the instantaneous phase of the longitudinal vibration than frequency domain method did.

  • PDF

Effect of Transverse Electric Fields on Fracture Behavior of Ferroelectric Ceramics (횡전기장이 강유전체 세라믹의 파괴거동에 미치는 영향)

  • Lee Jong Sik;Beom Hyeon Gyu;Jeong Kyoung Moon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.120-125
    • /
    • 2005
  • Effect of transverse electric fields on fracture behavior in ferroelectric ceramics under purely electrical loading is investigated. It is shown that the shape and size of the domain switching zone depend strongly on the ratio of the transverse electric field to the coercive electric field as well as the direction of the applied electric field. Under small-scale conditions, the crack-tip mode I and II stress intensity factors induced by ferroelectric domain switching are numerically obtained. The crack kinking in ferroelectric ceramics is also discussed.

The relationship between residual stresses and transverse weld cracks in the plate (후판용접부의 잔류응력과 횡균열의 상관관계)

  • 이해우;강성원;박종진
    • Proceedings of the KWS Conference
    • /
    • 2003.05a
    • /
    • pp.263-265
    • /
    • 2003
  • The transverse crack, a type of cold crack, occurs perpendicular to the axis of the weld interface, longitudinal residual stresses ($\sigma$k direction) are more important in transverse crack occurrence from my own experience. Specimens were fabricated and welded under actual construction conditions, and then residual stresses of longitudinal stresses were measured for different welding conditions with SAW and FCAW process. The residual stress values for the specimen welded Interpass temperature below 30$^{\circ}C$ was higher than the specimen welded interpass temperature of 100~120$^{\circ}C$. And also the residual stress values for a specimen measured at weld surface, as welded condition, was higher than that of longitudinal residual stresses that was measured from a small test piece, due to the residual stress was relieved in the process of the cutting and machining. Transverse weld cracks were detected in the area of the maximum residual stresses both SAW and FCAW process.

  • PDF

Analysis of Axial and Transverse Slip Displacements during the Oscillation of a Supported Tube (튜브진동 시 지지부에서의 축.횡방향 미끄럼변위 분석)

  • Song, Ju-Sun;Kim, Hyung-Kyu;Lee, Young-Ho;Kim, Jae-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.950-955
    • /
    • 2004
  • Slip displacement is brought into focus to study the tube fretting wear that occurs on the contact by the springs. An oscillating tube was in contact with plate support springs. The contact condition was varied as normal force 5 N, and gaps of 0.1 and 0.2 mm in the experiment. The oscillation range of the tube was also varied as 0.2, 0.3, 0.4 and 0.7 mm. Formulas for predicting the slip displacement range were derived in terms of the vibration amplitudes measured during the tube oscillation. It was found that the slip displacement in transverse direction was much higher ($720{\sim}33000$ times) than that in axial one. This resulted in the severer wear on the contact suffered from transverse slip.

  • PDF

A Study of Magnetic Properties in $Fe_{73.9}Cu_{1.0}Nb_{3.5}Si_{14.0}B_{7.6}$ by Magnetic Annelaing

  • Kim, Eng-Chan;Kim, Jin-Eui;Nam, Hyo-Duk
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.3
    • /
    • pp.29-33
    • /
    • 2000
  • The crystallographic and high frequency characteristics of $Fe_{73.9}Cu_{1.0}Nb_{3.5}Si_{14.0}B_{7.6}$ soft magnetic alloys were investigated under magnetic field annealing, The crystallization fraction of annealed samples with longitudinal magnetic fields is higher than that of samples without magnetic field. When the transverse magnetic field is applied, the crystallization fraction does not increases but decreases until $500^{circ}C$. It is found that for samples, the saturation induction are all same with 1.3 T. The coercive field of as-cast samples is 1.03 A/cm, but in annealed samples it decrease from 0.56 to 0.1A/cm with increasing annealing temperature from 400 to $550^{circ}C$. The squareness of annealed samples under transverse magnetic field has a small value than that of both without field and with longitudinal field annealing. It is noted that the magnetic field annealing with transverse direction to amorphous $Fe_{73.9}Cu_{1.0}Nb_{3.5}Si_{14.0}B_{7.6}$ profoundly influenced on the Mossbauer spectra in contrast to that with longitudinal direction and without magnetic field.

  • PDF

International Development Direction of Variable Gauge Vehicles (궤간 가변 차량의 세계적인 개발동향)

  • Ham Young-Sam;Yoon Ji-Na
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.418-423
    • /
    • 2003
  • Many countries in Asia have been researching for linking and activation of Asia transverse railway and we are trying to link Trans-Korean railway and Transcontinental railway. However we are confronted with a difficult question that the railway system of each country is different from each other-gauge, track formation and signal system. These problems will obstruct prior occupation of market because of loss of time and cost for trans vehicles and transshipment. In this paper, we tried to setting up development direction of Korean variable gauge vehicles by examine international development direction of variable gauge vehicles.

  • PDF