• Title/Summary/Keyword: Transverse correction

Search Result 210, Processing Time 0.024 seconds

Size-dependent bending analysis of FGM nano-sinusoidal plates resting on orthotropic elastic medium

  • Kolahchi, Reza;Bidgoli, Ali Mohammad Moniri;Heydari, Mohammad Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.1001-1014
    • /
    • 2015
  • Bending analysis of functionally graded (FG) nano-plates is investigated in the present work based on a new sinusoidal shear deformation theory. The theory accounts for sinusoidal distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. The material properties of nano-plate are assumed to vary according to power law distribution of the volume fraction of the constituents. The size effects are considered based on Eringen's nonlocal theory. Governing equations are derived using energy method and Hamilton's principle. The closed-form solutions of simply supported nano-plates are obtained and the results are compared with those of first-order shear deformation theory and higher-order shear deformation theory. The effects of different parameters such as nano-plate length and thickness, elastic foundation, orientation of foundation orthtotropy direction and nonlocal parameters are shown in dimensionless displacement of system. It can be found that with increasing nonlocal parameter, the dimensionless displacement of nano-plate increases.

A new higher order shear and normal deformation theory for functionally graded beams

  • Meradjah, Mustapha;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.793-809
    • /
    • 2015
  • In this scientific work, constructing of a novel shear deformation beam model including the stretching effect is of concern for flexural and free vibration responses of functionally graded beams. The particularity of this model is that, in addition to considering the transverse shear deformation and the stretching effect, the zero transverse shear stress condition on the beam surface is assured without introducing the shear correction parameter. By employing the Hamilton's principle together with the concept of the neutral axe's position for such beams, the equations of motion are obtained. Some examples are performed to demonstrate the effects of changing gradients, thickness stretching, and thickness to length ratios on the bending and vibration of functionally graded beams.

A novel higher order shear deformation theory based on the neutral surface concept of FGM plate under transverse load

  • Daouadji, Tahar Hassaine;Benferhat, Rabia;Adim, Belkacem
    • Advances in materials Research
    • /
    • v.5 no.2
    • /
    • pp.107-120
    • /
    • 2016
  • The static analysis of the simply supported functionally graded plate under transverse load by using a new sinusoidal shear deformation theory based on the neutral surface concept is investigated analytically in the present paper. No transversal shear correction factors are needed because a correct representation of the transversal shearing strain is given. The mechanical properties of the FGM plate are assumed to vary continuously through the thickness according to a power law formulation except Poisson's ratio, which is kept constant. The equilibrium and stability equations are derived by employing the principle of virtual work. Results are provided for thick to thin plates and for different values of the gradient index k, which subjected to sinusoidal or uniformly distributed lateral loads. The accuracy of the present results is verified by comparing it with finite element solution. From the obtained results, it can be concluded that the proposed theory is accurate and efficient in predicting the displacements and stresses of functionally graded plates.

Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams

  • Berrabah, H.M.;Tounsi, Abdelouahed;Semmah, Abdelwahed;Adda Bedia, E.A.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.3
    • /
    • pp.351-365
    • /
    • 2013
  • In this paper, unified nonlocal shear deformation theory is proposed to study bending, buckling and free vibration of nanobeams. This theory is based on the assumption that the in-plane and transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. In addition, this present model is capable of capturing both small scale effect and transverse shear deformation effects of nanobeams, and does not require shear correction factors. The equations of motion are derived from Hamilton's principle. Analytical solutions for the deflection, buckling load, and natural frequency are presented for a simply supported nanobeam, and the obtained results are compared with those predicted by the nonlocal Timoshenko beam theory and Reddy beam theories.

Influence of Slashpipe Exercise on Symmetrical Contraction of Trunk Muscle in Normal Adults

  • Choi, Young In;Kim, Jung Sun;Kim, Shin Young
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.5
    • /
    • pp.298-303
    • /
    • 2019
  • Purpose: This study examined the effects of slashpipe exercise on reducing the thickness of the left and right external oblique, internal oblique, transverse abdominis, erector spinae, and multifidus muscles. Methods: A total of 29 healthy adult men and women were included in the study. They performed trunk flexion in the supine position and trunk extension in the prone position with a slashpipe and weight bar. The external oblique, internal oblique, and transverse abdominis muscles were measured in the supine position, while the erector spinae and multifidus muscles were measured in the prone position. The data were analyzed using the SPSS ver 21.0 statistical program. The difference in thickness between the right and left sides of the trunk muscle was analyzed by repeated measures analysis. The statistical significance level was set to p<0.05. Results: The results showed that the slashpipe exercise reduced significantly the difference in thickness of the oblique internus and erector spinae muscles compared to the weight bar exercise. Conclusion: The chaotic fluidity of the fluid filled inside the slashpipe could be used as sensory feedback information on body mal-alignment, which would have positively affected the symmetrical contraction of the trunk muscles as a trigger for self-correction. Therefore, it will have a useful effect not only on the health of the general public, but also on low back patients and athletes with muscle asymmetry.

A new simple shear and normal deformations theory for functionally graded beams

  • Bourada, Mohamed;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.409-423
    • /
    • 2015
  • In the present work, a simple and refined trigonometric higher-order beam theory is developed for bending and vibration of functionally graded beams. The beauty of this theory is that, in addition to modeling the displacement field with only 3 unknowns as in Timoshenko beam theory, the thickness stretching effect (${\varepsilon}_Z{\neq}0$) is also included in the present theory. Thus, the present refined beam theory has fewer number of unknowns and equations of motion than the other shear and normal deformations theories, and it considers also the transverse shear deformation effects without requiring shear correction factors. The neutral surface position for such beams in which the material properties vary in the thickness direction is determined. Based on the present refined trigonometric higher-order beam theory and the neutral surface concept, the equations of motion are derived from Hamilton's principle. Numerical results of the present theory are compared with other theories to show the effect of the inclusion of transverse normal strain on the deflections and stresses.

Buckling of symmetrically laminated plates using nth-order shear deformation theory with curvature effects

  • Becheri, Tawfiq;Amara, Khaled;Bouazza, Mokhtar;Benseddiq, Noureddine
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1347-1368
    • /
    • 2016
  • In this article, an exact analytical solution for mechanical buckling analysis of symmetrically cross-ply laminated plates including curvature effects is presented. The equilibrium equations are derived according to the refined nth-order shear deformation theory. The present refined nth-order shear deformation theory is based on assumption that the in-plane and transverse displacements consist of bending and shear components, in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments The most interesting feature of this theory is that it accounts for a parabolic variation of the transverse shear strains across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. Buckling of orthotropic laminates subjected to biaxial inplane is investigated. Using the Navier solution method, the differential equations have been solved analytically and the critical buckling loads presented in closed-form solutions. The sensitivity of critical buckling loads to the effects of curvature terms and other factors has been examined. The analysis is validated by comparing results with those in the literature.

Nonsurgical maxillary expansion in a 60-year-old patient with gingival recession and crowding

  • Kim, Harim;Park, Sun-Hyung;Park, Jae Hyun;Lee, Kee-Joon
    • The korean journal of orthodontics
    • /
    • v.51 no.3
    • /
    • pp.217-227
    • /
    • 2021
  • Maxillary transverse deficiency often manifests as a posterior crossbite or edge-to-edge bite and anterior crowding. However, arbitrary arch expansion in mature patients has been considered to be challenging due to the possible periodontal adverse effects such as alveolar bone dehiscence and gingival recession. To overcome these limitations, nonsurgical maxillary expansion of the basal bone has been demonstrated in young adults. However, the age range for successful orthopedic expansion has remained a topic of debate, possibly due to the underlying individual variations in suture maturity. This case report illustrates nonsurgical, miniscrew-assisted rapid palatal expansion (MARPE) in a 60-year-old patient with maxillary transverse deficiency accompanied by anterior and posterior crossbites, crowding, and gingival recession. The use of MARPE allowed relief of crowding and correction of the crossbite without causing significant periodontal adverse effects.

Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method

  • Bakoura, Ahmed;Bourada, Fouad;Bousahla, Abdelmoumen Anis;Tounsi, Abdeldjebbar;Benrahou, Kouider Halim;Tounsi, Abdelouahed;Al-Zahrani, Mesfer Mohammad;Mahmoud, S.R.
    • Computers and Concrete
    • /
    • v.27 no.1
    • /
    • pp.73-83
    • /
    • 2021
  • In this article, the mechanical buckling analysis of simply-supported functionally graded plates is carried out using a higher shear deformation theory (HSDT) in conjunction with the stress function method. The proposed formulation is variationally consistent, does not use a shear correction factor and gives rise to a variation of transverse shear stress such that the transverse shear stresses vary parabolically through the thickness satisfying the surface conditions without stress of shear. The properties of the plate are supposed to vary across the thickness according to a simple power law variation in terms of volume fraction of the constituents of the material. Numerical results are obtained to study the influences of the power law index and the geometric ratio on the critical buckling load.

A new refined hyperbolic shear deformation theory for laminated composite spherical shells

  • Kada, Draiche;Abdelouahed, Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.84 no.6
    • /
    • pp.707-722
    • /
    • 2022
  • In this study, a new refined hyperbolic shear deformation theory (RHSDT) is developed using an equivalent single-layer shell displacement model for the static bending and free vibration response of cross-ply laminated composite spherical shells. It is based on a new kinematic in which the transverse displacement is approximated as a sum of the bending and shear components, leading to a reduction of the number of unknown functions and governing equations. The proposed theory uses the hyperbolic shape function to account for an appropriate distribution of the transverse shear strains through the thickness and satisfies the boundary conditions on the shell surfaces without requiring any shear correction factors. The shell governing equations for this study are derived in terms of displacement from Hamilton's principle and solved via a Navier-type analytical procedure. The validity and high accuracy of the present theory are ascertained by comparing the obtained numerical results of displacements, stresses, and natural frequencies with their counterparts generated by some higher-order shear deformation theories. Further, a parametric study examines in detail the effect of both geometrical parameters (i.e., side-to-thickness ratio and curvature-radius-to-side ratio), on the bending and free vibration response of simply supported laminated spherical shells, which can be very useful for many modern engineering applications and their optimization design.