• Title/Summary/Keyword: Transverse correction

Search Result 210, Processing Time 0.023 seconds

On the effect of porosity on the shear correction factors of functionally graded porous beams

  • Ben Abdallah Medjdoubi;Mohammed Sid Ahmed Houari;Mohamed Sadoun;Aicha Bessaim;Ahmed Amine Daikh;Mohamed-Ouejdi Belarbi;Abdelhak Khechai;Aman Garg;Mofareh Hassan Ghazwani
    • Coupled systems mechanics
    • /
    • v.12 no.3
    • /
    • pp.199-220
    • /
    • 2023
  • This article presents a new analytical model to study the effect of porosity on the shear correction factors (SCFs) of functionally graded porous beams (FGPB). For this analysis, uneven and logarithmic-uneven porosity functions are adopted to be distributed through the thickness of the FGP beams. Critical to the application of this theory is a determination of the correction factor, which appears as a coefficient in the expression for the transverse shear stress resultant; to compensate for the assumption that the shear strain is uniform through the depth of the cross-section. Using the energy equivalence principle, a general expression is derived from the static SCFs in FGPB. The resulting expression is consistent with the variationally derived results of Reissner's analysis when the latter are reduced from the two-dimensional case (plate) to the one-dimensional one (beam). A convenient algebraic form of the solution is presented and new study cases are given to illustrate the applicability of the present formulation. Numerical results are presented to illustrate the effect of the porosity distribution on the (SCFs) for various FGPBs. Further, the law of changing the mechanical properties of FG beams without porosity and the SCFare numerically validated by comparison with some available results.

Shear correction factors of a new exponential functionally graded porous beams

  • Mohammed Sid Ahmed Houari;Aicha Bessaim;Tarek Merzouki;AhmedAmine Daikh;Aman Garg;Abdelouahed Tounsi;Mohamed A. Eltaher;Mohamed-Ouejdi Belarbi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • This article introduces a novel analytical model for examining the impact of porosity on shear correction factors (SCFs) in functionally graded porous beams (FGPB). The study employs uneven and logarithmic-uneven modified porosity-dependent power-law functions, which are distributed throughout the thickness of the FGP beams. Additionally, a modified exponential-power law function is used to estimate the effective mechanical properties of functionally graded porous beams. The correction factor plays a crucial role in this analysis as it appears as a coefficient in the expression for the transverse shear stress resultant. It compensatesfor the assumption that the shear strain is uniform across the depth of the cross-section. By applying the energy equivalence principle, a general expression for static SCFs in FGPBs is derived. The resulting expression aligns with the findings obtained from Reissner's analysis, particularly when transitioning from the two-dimensional case (plate) to the one-dimensional case (beam). The article presents a convenient algebraic form of the solution and provides new case studies to demonstrate the practicality of the proposed formulation. Numerical results are also presented to illustrate the influence of porosity distribution on SCFs for different types of FGPBs. Furthermore, the article validates the numerical consistency of the mechanical property changesin FG beams without porosity and the SCF by comparing them with available results.

Thermal buckling analysis of thick anisotropic composite plates by finite strip method

  • Cheung, M.S.;Akhras, G.;Li, W.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.5
    • /
    • pp.473-484
    • /
    • 1999
  • In the present study, the thermal buckling analysis of thick anisotropic laminated composite plates is carried out using the finite strip method based on the higher-order shear deformation theory. This theory accounts for the parabolic distribution of the transverse shear strains through the thickness of the plate and for zero transverse shear stresses on the plate surfaces. Therefore, this theory yields improved results over the Mindlin plate theory and eliminates the need for shear correction factors in calculating the transverse shear stiffness. The critical temperatures of simply supported rectangular cross-ply and angle-ply composite laminates are calculated. The effects of several parameters, such as the aspect ratio, the length-to-thickness ratio, the number of plies, fibre orientation and stacking sequence, are investigated.

Analysis of composite steel-concrete beams using a refined high-order beam theory

  • Lezgy-Nazargah, M.;Kafi, L.
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1353-1368
    • /
    • 2015
  • A finite element model is presented for the analysis of composite steel-concrete beams based on a refined high-order theory. The employed theory satisfies all the kinematic and stress continuity conditions at the layer interfaces and considers effects of the transverse normal stress and transverse flexibility. The global displacement components, described by polynomial or combinations of polynomial and exponential expressions, are superposed on local ones chosen based on the layerwise or discrete-layer concepts. The present finite model does not need the incorporating any shear correction factor. Moreover, in the present $C^1$-continuous finite element model, the number of unknowns is independent of the number of layers. The proposed finite element model is validated by comparing the present results with those obtained from the three-dimensional (3D) finite element analysis. In addition to correctly predicting the distribution of all stress components of the composite steel-concrete beams, the proposed finite element model is computationally economic.

A comparative study for bending of cross-ply laminated plates resting on elastic foundations

  • Zenkour, Ashraf M.
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1569-1582
    • /
    • 2015
  • Two hyperbolic displacement models are used for the bending response of simply-supported orthotropic laminated composite plates resting on two-parameter elastic foundations under mechanical loading. The models contain hyperbolic expressions to account for the parabolic distributions of transverse shear stresses and to satisfy the zero shear-stress conditions at the top and bottom surfaces of the plates. The present theory takes into account not only the transverse shear strains, but also their parabolic variation across the plate thickness and requires no shear correction coefficients in computing the shear stresses. The governing equations are derived and their closed-form solutions are obtained. The accuracy of the models presented is demonstrated by comparing the results obtained with solutions of other theories models given in the literature. It is found that the theories proposed can predict the bending analysis of cross-ply laminated composite plates resting on elastic foundations rather accurately. The effects of Winkler and Pasternak foundation parameters, transverse shear deformations, plate aspect ratio, and side-to-thickness ratio on deflections and stresses are investigated.

4절점 응축 셸 요소를 이용한 복합재 적층 구조물의 전단응력 예측

  • Choe, Nu-Ri;Lee, Byeong-Chae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2292-2301
    • /
    • 2000
  • We propose an accurate and efficient estimation method of transverse shear stresses for analysis and design of laminated composite structures by 4-node quadrilateral degenerated shell elements. To get proper distributions of transverse shear stresses in each layer, we use 3-dimensional equilibrium equations instead of constitutive equations with shear correction factors which vary diversely according to the shapes of shell sections. Three dimensional equilibrium equations are integrated through the thickness direction with complete polynomial membrane stress fields, which are recovered by REP (Recovery by Equilibrium in Patches) recovery method. The 4-node quadrilateral degenerated shell element used in this paper has drilling degrees of freedom and shear stresses derived from assumed strain fields that are set up at natural coordinate systems. The numerical results demonstrate that the proposed estimation method attains reasonable accuracy and efficiency compared with other methods and FE analysis using 4-node degenerated shell elements.

Vibration and stability analyses of thick anisotropic composite plates by finite strip method

  • Akhras, G.;Cheung, M.S.;Li, W.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.1
    • /
    • pp.49-60
    • /
    • 1995
  • In the present study, a finite strip method for the vibration and stability analyses of anisotropic laminated composite plates is developed according to the higher-order shear deformation theory. This theory accounts for the parabolic distribution of the transverse shear strains through the thickness of the plate and for zero transverse shear stresses on the plate surfaces. In comparison with the finite strip method based on the first-order shear deformation theory, the present method gives improved results for very thick plates while using approximately the same number of degrees of freedom. It also eliminates the need for shear correction factors in calculating the transverse shear stiffness. A number of numerical examples are presented to show the effect of aspect ratio, length-to-thickness ratio, number of plies, fibre orientation and stacking sequence on the natural frequencies and critical buckling loads of simply supported rectangular cross-ply and arbitrary angle-ply composite laminates.

Clinical application of maxillary tissue bone-borne expander and biocreative reverse curve system in the orthodontic retreatment of severe anterior open bite with transverse discrepancy: A case report

  • Choi, Jin-Young;Jin, Bai;Kim, Seong-Hun
    • The korean journal of orthodontics
    • /
    • v.52 no.5
    • /
    • pp.372-382
    • /
    • 2022
  • Anterior open bite and transverse discrepancy are often accompanied by hyperdivergent skeletal patterns. In addition, degenerative joint disorders and vertical maxillary excess contribute to an unfavorable convex facial profile with a retruded chin. Correction of this complex three-dimensional problem with orthodontic treatment alone is considered challenging owing to anatomical limitations. Moreover, a history of orthodontic treatment with premolar extraction makes retreatment difficult. This case report illustrates the application of a maxillary tissue bone-borne expander and biocreative reverse curve system in a 23-year-old female patient with a severe anterior open bite and transverse discrepancy who underwent orthodontic treatment with four premolar extractions. By setting the treatment target under precise diagnosis and using appropriate appliances, a satisfactory treatment result could be achieved without orthognathic surgery.

Dynamic Analysis of Laminated Composite and Sandwich Plates Using Trigonometric Layer-wise Higher Order Shear Deformation Theory

  • Suganyadevi, S;Singh, B.N.
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.1
    • /
    • pp.10-16
    • /
    • 2016
  • A trigonometric Layerwise higher order shear deformation theory (TLHSDT) is developed and implemented for free vibration and buckling analysis of laminated composite and sandwich plates by analytical and finite element formulation. The present model assumes parabolic variation of out-plane stresses through the depth of the plate and also accomplish the zero transverse shear stresses over the surface of the plate. Thus a need of shear correction factor is obviated. The present zigzag model able to meet the transverse shear stress continuity and zigzag form of in-plane displacement continuity at the plate interfaces. Hence, botheration of shear correction coefficient is neglected. In the case of analytical method, the governing differential equation and boundary conditions are obtained from the principle of virtual work. For the finite element formulation, an efficient eight noded $C^0$ continuous isoparametric serendipity element is established and employed to examine the dynamic analysis. Like FSDT, the considered mathematical model possesses similar number of variables and which decides the present models computationally more effective. Several numerical predictions are carried out and results are compared with those of other existing numerical approaches.

Distraction osteogenesis in collapsed mandible arch patients by accidents (사고에 의해 하악골 폭경이 붕괴된 환자에서 견인골 신장술)

  • Tae, Ki-Chul;Kang, Kyung-Hwa
    • The korean journal of orthodontics
    • /
    • v.33 no.2 s.97
    • /
    • pp.85-90
    • /
    • 2003
  • The symphyseal mandibular fractures due to accidents happened in form of collapsed transeverse arch and multiple teeth loss. And the collapsed transverse arch in mandible occurs with unilaterally or bilaterally. So that patient needs to recover arch width. Conventional approaches, however, we difficult to get appropriate transverse arch correction. Distraction osteogenesis is a unique form of clinical tissue engineering and biologic process of new bone formation between bone segments that are gradually separately by incremental traction. Distraction osteogenesis is considered that great potential for correcting transverse mandibular deficiencies. Tn this paper, distraction osteogenesis applied to patients who had a unilateral or bilateral collapsed arch width in mandible. But it was necessary secrutinize consideration about periodontal conditions, biomechanical vectors, TMJ adaptations, and neuromuscular change during distraction osteogenesis period.