• Title/Summary/Keyword: Transverse correction

Search Result 210, Processing Time 0.022 seconds

Free vibrations of laminated composite plates using a novel four variable refined plate theory

  • Sehoul, Mohammed;Benguediab, Mohamed;Bakora, Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.603-613
    • /
    • 2017
  • In this research, the free vibration response of laminated composite plates is investigated using a novel and simple higher order shear deformation plate theory. The model considers a non-linear distribution of the transverse shear strains, and verifies the zero traction boundary conditions on the surfaces of the plate without introducing shear correction coefficient. The developed kinematic uses undetermined integral terms with only four unknowns. Equations of motion are obtained from the Hamilton's principle and the Navier method is used to determine the closed-form solutions of antisymmetric cross-ply and angle-ply laminates. Numerical examples studied using the present formulation is compared with three-dimensional elasticity solutions and those calculated using the first-order and the other higher-order theories. It can be concluded that the present model is not only accurate but also efficient and simple in studying the free vibration response of laminated composite plates.

A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate

  • Tounsi, Abdelouahed;Houari, Mohammed Sid Ahmed;Bessaim, Aicha
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.547-565
    • /
    • 2016
  • In this work a new 3-unknown non-polynomial shear deformation theory for the buckling and vibration analyses of functionally graded material (FGM) sandwich plates is presented. The present theory accounts for non-linear in plane displacement and constant transverse displacement through the plate thickness, complies with plate surface boundary conditions, and in this manner a shear correction factor is not required. The main advantage of this theory is that, in addition to including the shear deformation effect, the displacement field is modelled with only 3 unknowns as the case of the classical plate theory (CPT) and which is even less than the first order shear deformation theory (FSDT). The plate properties are assumed to vary according to a power law distribution of the volume fraction of the constituents. Equations of motion are derived from the Hamilton's principle. Analytical solutions of natural frequency and critical buckling load for functionally graded sandwich plates are obtained using the Navier solution. The results obtained for plate with various thickness ratios using the present non-polynomial plate theory are not only substantially more accurate than those obtained using the classical plate theory, but are almost comparable to those obtained using higher order theories with more number of unknown functions.

Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model

  • Hadji, Lazreg
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.253-262
    • /
    • 2020
  • In this paper, a new higher order shear deformation model is developed for static analysis of functionally graded beams with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. The model account for higher-order variation of transverse shear strain through the depth of the beam and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. The present work aims to study the effect of the distribution forms of porosity on the bending of simply supported FG beam. Based on the present higher-order shear deformation model, the equations of motion are derived by the principle of virtual works. Navier type solution method was used to obtain displacement and stresses, and the numerical results are compared with those available in the literature. A comprehensive parametric study is carried out to assess the effects of volume fraction index, porosity fraction index, and geometry on the bending of imperfect FG beams. It can be concluded that the proposed model is simple and precise for the resolution of the behavior of flexural FGM beams while taking into account the shape of distribution of the porosity.

On the modeling of dynamic behavior of composite plates using a simple nth-HSDT

  • Djedid, I. Klouche;Draiche, Kada;Guenaneche, B.;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Bedia, E.A. Adda
    • Wind and Structures
    • /
    • v.29 no.6
    • /
    • pp.371-387
    • /
    • 2019
  • In the present paper, a simple refined nth-higher-order shear deformation theory is applied for the free vibration analysis of laminated composite plates. The proposed displacement field is based on a novel kinematic in which include the undetermined integral terms and contains only four unknowns, as against five or more in case of other higher-order theories. The present theory accounts for adequate distribution of the transverse shear strains through the plate thickness and satisfies the shear stress-free boundary conditions on the top and bottom surfaces of the plate, therefore, it does not require problem dependent shear correction factor. The governing equations of motion are derived from Hamilton's principle and solved via Navier-type to obtain closed form solutions. The numerical results of non-dimensional natural frequencies obtained by using the present theory are presented and compared with those of other theories available in the literature to verify the validity of present solutions. It can be concluded that the present refined theory is accurate and efficient in predicting the natural frequencies of isotropic, orthotropic and laminated composite plates.

A Study on the Evaluation Method of Sound Power for a Travelling Vehicle Using CPX and Pass-by Measurements (CPX 및 Pass-by 계측을 이용한 단독 주행 차량의 음향파워 평가 방법에 관한 연구)

  • Choi, Tae-M.;Mun, Sung-H.;Seo, Young-G.;Kim, Jin-H.;Kim, Byung-H.;Bae, Hyo-J.;Cho, Dae-S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.421-427
    • /
    • 2006
  • This paper presents a novel method to determine sound power level(PWL) emitted by a travelling vehicle for road traffic noise simulation. The PWL is evaluated by the equivalent sound pressure level(SPL) measured by close proximity method and the sound power correction factor derived from the maximum SPL measured by pass-by method and the propagation attenuation of vehicle noise during the pass-by measurement. Using the method, we derive the empirical formula for PWL estimation in 1/1-octave and overall frequency bands for 8 vehicles(automobile, SUV, small truck, large bus, trailer, 3 dump trucks) tested at two road surfaces(dense graded asphalt, 30mm transverse tinning concrete) of Korean highway test road. The suggested approach, if securing sufficient data to represent the acoustic characteristics of au vehicle types, has a strong merit to be able to evaluate sound power levels for any combination of vehicle categories and traffic volumes.

  • PDF

Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories

  • Yahia, Sihame Ait;Atmane, Hassen Ait;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1143-1165
    • /
    • 2015
  • In this work, various higher-order shear deformation plate theories for wave propagation in functionally graded plates are developed. Due to porosities, possibly occurring inside functionally graded materials (FGMs) during fabrication, it is therefore necessary to consider the wave propagation in plates having porosities in this study. The developed refined plate theories have fewer number of unknowns and equations of motion than the first-order shear deformation theory, but accounts for the transverse shear deformation effects without requiring shear correction factors. The rule of mixture is modified to describe and approximate material properties of the functionally graded plates with porosity phases. The governing equations of the wave propagation in the functionally graded plate are derived by employing the Hamilton's principle. The analytic dispersion relation of the functionally graded plate is obtained by solving an eigenvalue problem. The effects of the volume fraction distributions and porosity volume fraction on wave propagation of functionally graded plate are discussed in detail. The results carried out can be used in the ultrasonic inspection techniques and structural health monitoring.

Ship nonlinear-feedback course keeping algorithm based on MMG model driven by bipolar sigmoid function for berthing

  • Zhang, Qiang;Zhang, Xian-ku;Im, Nam-kyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.5
    • /
    • pp.525-536
    • /
    • 2017
  • Course keeping is hard to implement under the condition of the propeller stopping or reversing at slow speed for berthing due to the ship's dynamic motion becoming highly nonlinear. To solve this problem, a practical Maneuvering Modeling Group (MMG) ship mathematic model with propeller reversing transverse forces and low speed correction is first discussed to be applied for the right-handed single-screw ship. Secondly, a novel PID-based nonlinear feedback algorithm driven by bipolar sigmoid function is proposed. The PID parameters are determined by a closed-loop gain shaping algorithm directly, while the closed-loop gain shaping theory was employed for effects analysis of this algorithm. Finally, simulation experiments were carried out on an LPG ship. It is shown that the energy consumption and the smoothness performance of the nonlinear feedback control are reduced by 4.2% and 14.6% with satisfactory control effects; the proposed algorithm has the advantages of robustness, energy saving and safety in berthing practice.

A Study on the Buckling Strength of Plate Panels with Opening (유공판의 좌굴강도에 관한 연구)

  • Kim, Ul-Nyeon;Choe, Ick-Heung;Kwon, Jin-Chil;Paik, Jeom-Kee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.210-224
    • /
    • 2010
  • The aim of the present study is to investigate the buckling strength of plates and stiffened panels with opening under transverse thrust and shear actions. It is observed that the existing design formulation for critical-buckling strength of plates are not valid for perforated plates, because the current design formulation trends can significantly overestimate or underestimate the load-carrying capacity of plates when plates have large opening and/or are thick. A series of eigen value and elastic.plastic large deflection finite element analyses are carried out with varying the aspect ratio of plate, the opening size and location on plate until and after the ultimate strength is reached. Based on the results obtained from the present study, closed-form design formulations for the elastic buckling strength of plates and stiffened panels with opening are derived. The derived design formulations are considered plasticity correction of the material and verified by experimental tests and results of nonlinear finite element computations.

Improved HSDT accounting for effect of thickness stretching in advanced composite plates

  • Bouhadra, Abdelhakim;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Benyoucef, Samir;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.61-73
    • /
    • 2018
  • In this article, a higher shear deformation theory (HSDT) is improved to consider the influence of thickness stretching in functionally graded (FG) plates. The proposed HSDT has fewer numbers of variables and equations of motion than the first-order shear deformation theory (FSDT), but considers the transverse shear deformation influences without requiring shear correction coefficients. The kinematic of the present improved HSDT is modified by considering undetermined integral terms in in-plane displacements and a parabolic distribution of the vertical displacement within the thickness, and consequently, the thickness stretching influence is taken into account. Analytical solutions of simply supported FG plates are found, and the computed results are compared with 3D solutions and those generated by other HSDTs. Verification examples demonstrate that the developed theory is not only more accurate than the refined plate theory, but also comparable with the HSDTs which use more number of variables.

Buckling and free vibration analyses of nanobeams with surface effects via various higher-order shear deformation theories

  • Rahmani, Omid;Asemani, S. Samane
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.175-187
    • /
    • 2020
  • The theories having been developed thus far account for higher-order variation of transverse shear strain through the depth of the beam and satisfy the stress-free boundary conditions on the top and bottom surfaces of the beam. A shear correction factor, therefore, is not required. In this paper, the effect of surface on the axial buckling and free vibration of nanobeams is studied using various refined higher-order shear deformation beam theories. Furthermore, these theories have strong similarities with Euler-Bernoulli beam theory in aspects such as equations of motion, boundary conditions, and expressions of the resultant stress. The equations of motion and boundary conditions were derived from Hamilton's principle. The resultant system of ordinary differential equations was solved analytically. The effects of the nanobeam length-to-thickness ratio, thickness, and modes on the buckling and free vibration of the nanobeams were also investigated. Finally, it was found that the buckling and free vibration behavior of a nanobeam is size-dependent and that surface effects and surface energy produce significant effects by increasing the ratio of surface area to bulk at nano-scale. The results indicated that surface effects influence the buckling and free vibration performance of nanobeams and that increasing the length-to-thickness increases the buckling and free vibration in various higher-order shear deformation beam theories. This study can assist in measuring the mechanical properties of nanobeams accurately and designing nanobeam-based devices and systems.