• Title/Summary/Keyword: Transposon

Search Result 135, Processing Time 0.025 seconds

Insertional Transposon Mutagenesis of Xanthomonas oryzae pv. oryzae KXO85 by Electroporation

  • Lee, Byoung-Moo;Park, Young-Jin;Park, Dong-Suk;Kang, Hee-Wan;Lee, Gil-Bok;Hahn, Jang-Ho
    • The Plant Pathology Journal
    • /
    • v.20 no.3
    • /
    • pp.229-233
    • /
    • 2004
  • The bacterial leaf blight, which is caused by Xantho-monas oryzae pv. oryzae, is the most damaging and intractable disease of rice. To identify the genes involved in the virulence mechanism of transposon TnS complex, which possesses a linearized transposon and transposase, was successfully introduced into X. oryzae pv. oryzae by electroporation. The transposon mutants were selected and confirm the presence of transposition in X. oryzae pv. oryzae by the PCR amplification of transposon fragments and the Southern hybridization using these mutants. Furthermore, transposon insertion sites in the mutant bacterial chromosome were deter-mined by direct genomic DNA sequencing using transposon-specific primers with ABI 3100 Genetic Analyzer. Efficiency of transposition was influenced mostly by the competence status of X. oryzae pv. oryzae cells and the conditions of electroporation. These results indicated that the insertion mutagenesis strategy could be applied to define function of uncharacterized genes in X. oryzae pv. oryzae.

Transposable Genetic Elements, the Mechanisms of Transposition, and Their Uses in Genetic Studies (게놈 내 전이성 인자와 그 이동기구 및 이용)

  • 한창열;한지학
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.5
    • /
    • pp.241-260
    • /
    • 1995
  • Transposons, present in the genomes of all living organisms, are genetic element that can change positions, or transpose, within the genome. Most genomes contain several kinds of transposable elements and the molecular details of the mechanisms by which these transposons move have recently been uncovered in many families of transposable elements. Transposition is brought about by an enzyme known as transposaese encoded by the autonomous transposon itself, but, in the unautonomous transposon lacking the gene encoding the transposase, movement occurs only at the presence of the enzyme encoded by the autonomous one. There are two types of transposition events, conservative and replicative transposition. In the former the transposon moves without replication, both strands of the DNA moving together from one place to the other while in the latter the transposition frequently involves DNA replication, so one copy of transposon remains at its original site as another copy insole to a new site. The insertion of transposon into a gene can prevent it expression whereas excision from the gene may restore the ability of the gene to be expressed. There are marked similarities between transposons and certain viruses having single stranded Plus (+) RNA genomes. Retrotransposons, which differ from the ordinary transposons in that they transpose via an RNA-intermediate, behave much like retroviruses and have a structure of integrated retrovial DNA when they are inserted to a new target site. An insertional mutagenesis called transposon-tagging is now being used in a number of plant species to isolate genes involved in developmental and metabolic processes which have been proven difficult to approach by the traditional methods. Attempts to device a transposon-tagging system based on the maize Ac for use in heterologous species have been made by many research workers.

  • PDF

MMTS, a New Subfamily of Tc1-like Transposons

  • Ahn, Sang Jung;Kim, Moo-Sang;Jang, Jae Ho;Lim, Sang Uk;Lee, Hyung Ho
    • Molecules and Cells
    • /
    • v.26 no.4
    • /
    • pp.387-395
    • /
    • 2008
  • A novel Tc1-like transposable element has been identified as a new DNA transposon in the mud loach, Misgurnus mizolepis. The M. mizolepis Tc1-like transposon (MMTS) is comprised of inverted terminal repeats and a single gene that codes Tc1-like transposase. The deduced amino acid sequence of the transposase-encoding region of MMTS transposon contains motifs including DDE motif, which was previously recognized in other Tc1-like transposons. However, putative MMTS transposase has only 34-37% identity with well-known Tc1, PPTN, and S elements at the amino acid level. In dot-hybridization analysis used to measure the copy numbers of the MMTS transposon in genomes of the mud loach, it was shown that the MMTS transposon is present at about $3.36{\times}10^4$ copies per $2{\times}10^9$ bp, and accounts for approximately 0.027% of the mud loach genome. Here, we also describe novel MMTS-like transposons from the genomes of carp-like fishes, flatfish species, and cichlid fishes, which bear conserved inverted repeats flanking an apparently intact transposase gene. Additionally, BLAST searches and phylogenetic analysis indicated that MMTS-like transposons evolved uniquely in fishes, and comprise a new subfamily of Tc1-like transposons, with only modest similarity to Drosophila melanogaster (foldback element FB4, HB2, HB1), Xenopus laevis, Xenopus tropicalis, and Anopheles gambiae (Frisky).

Isolation of Nif$^{-10}$ -mutants through transposon mutagenesis in enterobacter agglomerans 339 (Enterobacter agglomerans 339에 있어서 transposon umtagenesis를 통한 Nif$^{-10}$ -mutants 분리 동정)

  • 민병환;이호자
    • Korean Journal of Microbiology
    • /
    • v.26 no.1
    • /
    • pp.20-26
    • /
    • 1988
  • Three $NIf^{-}$ -mutants were isolated from Enterbacter agglomerans 339 through the transposon umtagenesis using a RP4-mobilising system for its nif-gene characterization. All mutants hadn't acetylene-reduction ability. Then we confirmed that Tn5 was inserted into all conserved nif-plasmids through the Southern Hybridization.

  • PDF

Genetic Analysis of Caulobuter crescentus by Using Transposon Tn5 and Reverse Field Electrophoresis (Transposon Tn5 및 Reverse Field Electrophoresis를 이용한 Caulobuter crescentus의 유전자 분석 연구)

  • 구본성;버트일리
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.3
    • /
    • pp.183-187
    • /
    • 1989
  • The bacteriophage Mu and transposon Tn5 containing plasmid pJB4JI-transferred transposon Tn5 to Caulobuter crescentus. When several thousand of transposon Tn5 insertion mutants were examined, we found auxotrophic and motility mutants at frequencies of 2% and 3%, respectively. Transposition of transposon Tn5 was analyzed by the reverse field electrophoresis and Southern hybridization. The results indicated that transposon Tn5 was randomly inserted to Caulobuter crescentus chromosome but the plasmid vector, pJB4JI, was not maintained.

  • PDF

Enhanced Lycopene Production in Recombinant Escherichia coli by Random Transposon and NTG Mutagenesis (Transposon 및 NTG 돌연변이를 이용한 재조합 대장균의 라이코펜 생산성 증진)

  • Yoon, Sang-Hwal;Ko, Min-Su;Park, Kyoung-Ae;Jung, Kyung-Hwa;Shin, Yong-Chul;Lee, Young-Mi;Lee, Sook-Hee;Kim, Seon-Won
    • KSBB Journal
    • /
    • v.21 no.2
    • /
    • pp.90-95
    • /
    • 2006
  • Escherichia coli harboring pAC-LYCO4 and pDdxs was used for lycopene production. Three wild type strains of E. coli OW1, MG1655, and W3110 were compared with DH5${\alpha}$ used before for lycopene production. Lycopene productivity of E. coli MG1655 was similar to DH5${\alpha}$ and the highest among those wild type strain. Therefore, MG1655 strain was used for random transposon and NTG mutagenesis to increase lycopene productivity. Through transposon mutation, five transposon mutants with increased lycopene productivity were obtained. It was found that genes knocked out by transposon insertion were treB in Tn1 mutant, B2436 in Tn2 mutant, and rfaH in Tn3, 4, and 5 mutants. Lycopene productivity was the highest in Tn4 mutant among the Tn mutants, which was 6-fold and 8-fold higher in lycopene concentration and content, respectively, in comparison with those obtained with wild type strain. NTG4 mutant was acquired with NTG mutation. The highest lycopene productivity of 6 mg/L and 4 mg/g DCW was obtained from the NTG4 mutant when arabinose of 0.013 mM was added for induction of dxs, rate-limiting gene of MEP pathway. The lycopene productivity of NTG4 mutant was increased 18-fold and 12-fold in lycopene concentration and content, respectively when comparing with the wild type strain.

Asymmetry of Cotransduction Frequency Occured When the Transposon Is Used as a Marker (전위인자가 표식인자로 사용될때 발생하는 동시형질도입의 비대칭성)

  • 김창훈;박찬규
    • Korean Journal of Microbiology
    • /
    • v.30 no.2
    • /
    • pp.83-87
    • /
    • 1992
  • When the transposon is used as a selectable marker. the cotransduction frequency depends on the selection order of the markers. In this study. we adopted a mathematical approach to explain this phenomenon. At first, the formation of transducing particles were considered in five different configurations. Then the probability functions indicating the possibilities for a marker to be fixed were mathematically formulated on the basis of probability density concept. After actual values and useful assumptions were integrated into the Formula. resulting frequencies from theoretical calculations were compared with actual data. Such analysis let us conclude that the asymmetry in the frequency arose from the lack of homology required for homologous recombination due to the transposon insertion and from the suppression of recombination around the region where the transposon is inserted.

  • PDF

Applications of Transposon-Based Gene Delivery System in Bacteria

  • Choi, Kyoung-Hee;Kim, Kang-Ju
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.3
    • /
    • pp.217-228
    • /
    • 2009
  • Mobile genetic segments, or transposons, are also referred to as jumping genes as they can shift from one position in the genome to another, thus inducing a chromosomal mutation. According to the target site-specificity of the transposon during a transposition event, the result is either the insertion of a gene of interest at a specific chromosomal site, or the creation of knockout mutants. The former situation includes the integration of conjugative transposons via site-specific recombination, several transposons preferring a target site of a conserved AT-rich sequence, and Tn7 being site-specifically inserted at attTn7, the downstream of the essential glmS gene. The latter situation is exploited for random mutagenesis in many prokaryotes, including IS (insertion sequence) elements, mariner, Mu, Tn3 derivatives (Tn4430 and Tn917), Tn5, modified Tn7, Tn10, Tn552, and Ty1, enabling a variety of genetic manipulations. Randomly inserted transposons have been previously employed for a variety of applications such as genetic footprinting, gene transcriptional and translational fusion, signature-tagged mutagenesis (STM), DNA or cDNA sequencing, transposon site hybridization (TraSH), and scanning linker mutagenesis (SLM). Therefore, transposon-mediated genetic engineering is a valuable discipline for the study of bacterial physiology and pathogenesis in living hosts.

A Database System for High-Throughput Transposon Display Analyses of Rice

  • Inoue, Etsuko;Yoshihiro, Takuya;Kawaji, Hideya;Horibata, Akira;Nakagawa, Masaru
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.15-20
    • /
    • 2005
  • We developed a database system to enable efficient and high-throughput transposon analyses in rice. We grow large-scale mutant series of rice by taking advantage of an active MITE transposon mPing, and apply the transposon display method to them to study correlation between genotypes and phenotypes. But the analytical phase, in which we find mutation spots from waveform data called fragment profiles, involves several problems from a viewpoint of labor amount, data management, and reliability of the result. As a solution, our database system manages all the analytical data throughout the experiments, and provides several functions and well designed web interfaces to perform overall analyses reliably and efficiently.

  • PDF

Characterization of a new staphylococcal site-specific recombinase sin and genetic organization of its flanking region

  • Yong, Jun-Hyong;Kim, Young-Sun;Byeon, Woo-Hyeon
    • Journal of Microbiology
    • /
    • v.35 no.2
    • /
    • pp.92-96
    • /
    • 1997
  • A new site-specific recombinase sin, as a component of a putatie transposon has been cloned and its base sequence has been determined. The proposed sin shows a hish degree of homology with pI9789-sin and pSK1-sin. There is a large (16 bp) inverted repeat downstream of proposed sin and the postulate dhelix-turn-helix motif is located at the extreme C-terminus of the poposed Sin. The transposase gene (tnpA) and .betha.-lactamase gene (blaZ) are located upstream of sin and arsenate reductase gene (arsC) and arsenic efflux pump protein gene (ars B) are downstream. This genetic arrangement seems to be a part of a new putative transposon because there is no known transposon with a gene arrangement of tnpA-blaZ-sin-arsC.

  • PDF