• Title/Summary/Keyword: Transporter gene

Search Result 259, Processing Time 0.027 seconds

Effects of Fattening Period on Growth Performance, Carcass Characteristics and Lipogenic Gene Expression in Hanwoo Steers

  • Kwon, Eung Gi;Park, Byung Ki;Kim, Hyeong Cheol;Cho, Young Moo;Kim, Tae Il;Chang, Sun Sik;Oh, Young Kyoon;Kim, Nam Kuk;Kim, Jun Ho;Kim, Young Jun;Kim, Eun-Jib;Im, Seok Ki;Choi, Nag-Jin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.12
    • /
    • pp.1654-1660
    • /
    • 2009
  • This study was conducted to investigate the effects of different fattening periods i.e. 25, 27 and 29 months of age (25 mo, 27 mo and 29 mo), on feed consumption, body weight gain, carcass parameters, and lipogenic gene expression in 45 Korean native steers (Hanwoo). Daily DM intake was higher in steers on 29 mo compared with those on 25 mo or 27 mo. Daily body weight gain was higher in steers on 25 mo compared with those on 27 mo or 29 mo during fattening and overall experimental periods. Therefore, feed conversion ratio was lower in 25 mo compared with 27 mo or 29 mo during the fattening and whole experimental periods. As expected, slaughter and carcass weights were higher in the order of 29 mo>27 mo>25 mo. Carcass yield grade was relatively lower in 29 mo reflecting higher back fat thickness compared with other treatments, while carcass quality grade was not largely influenced by the treatments. By investigation with an ultra-sound scanning technique, the marbling score was significantly and numerically higher in 25 mo compared with 27 mo or 29 mo. The mRNA levels of stearoyl-CoA desaturase (SCD) gene were gradually increased in the late fattening stages (p<0.01) and mRNA of acetyl-CoA carboxylase (ACC), ATP citrate lyase (ACL) and glucose transporter 4 (GLUT4) gene were highly expressed in 29 mo compared with 25 mo and 27 mo (p<0.05). However, gene expressions of adipocyte fatty acid binding protein 4 (FABP4) and lipoprotein lipase (LPL) were not significantly different among the treatments. Thus the present results indicated that different fattening period has no major effect on carcass characteristics, although 25 mo had a lower carcass weight compared with 27 mo or 29 mo.

Filamentous growth of Escherichia coli by dephosphorylated NPr (탈인산화된 NPr에 의한 대장균의 섬유상 생장)

  • Choi, Umji;Seok, Yeong-Jae;Lee, Chang-Ro
    • Korean Journal of Microbiology
    • /
    • v.53 no.3
    • /
    • pp.149-155
    • /
    • 2017
  • The nitrogen phosphotransferase (PTS) system is a regulatory cascade present in most Proteobacteria, where it controls different functions. The nitrogen PTS is usually composed of $EI^{Ntr}$ (encoded by the ptsP gene), NPr (encoded by the ptsO gene), and $EIIA^{Ntr}$ (encoded by the ptsN gene). While $EIIA^{Ntr}$ plays a role in a variety of cellular processes, such as potassium homeostasis, regulation of ppGpp accumulation, nitrogen and carbon metabolisms, and regulation of ABC transporters, little information is available for a physiological role of NPr. A recent study showed that dephosphorylated NPr affects adaptation to envelope stresses in Escherichia coli. In this study, we provide another phenotype related to NPr. The ptsP mutant showed a filamentation phenotype. The filamentation phenotype of the ptsP mutant was recovered by additional deletion of the ptsO gene, but not by additional deletion of the ptsN gene, suggesting that an increased level of dephosphorylated NPr in the ptsP mutant renders cells the filamentous growth. This idea was confirmed by the fact that cells with increased levels of dephosphorylated NPr shows the filamentation phenotype. Additionally, we showed that cell size of E. coli increases with incremental dephosphorylated NPr concentrations. These results suggested that dephosphorylated NPr induces morphological change of E. coli.

Polymorphism of the Helicobacter pylori feoB Gene and Clinical Correlation with Iron-deficiency Anemia in Korea (Helicobacter pylori feoB 유전자의 다형성과 철 결핍성 빈혈과의 관계)

  • Min, Kee-Woon;Jeon, Byung-Ha;Oh, Yoo-Joung;Choe, Yon-Ho
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.6 no.2
    • /
    • pp.112-119
    • /
    • 2003
  • Purpose: Helicobacter pylori infection is thought to be correlated with iron-deficiency anemia (IDA) at puberty. The H. pylori feoB gene, a high-affinity ferrous iron transporter, plays a central role in iron acquisition. This study aims to analyze the H. pylori feoB status according to the presence of antral gastritis with or without IDA. Methods: Fourteen H. pylori-positive patients aged from 10~18 years were categorized into subgroups based on the presence or absence of IDA. Eight patients had IDA, and the other six showed normal hematological findings. Genomic DNA was isolated from cultured H. pylori. Five sets of primers were used for PCR amplification of the feoB gene. The feoB region, 1.93 kb, was generated by linking of the PCR products and sequenced. The feoB gene sequences of H. pylori J99 and 26695 were used to compare with the clinical strains. Sequence comparisons of the feoB regions between the IDA (+) and (-) groups were performed. Results: Sequence analysis of the complete coding region of the feoB revealed 16 sites of polymorphism. Among these, 3 polymorphisms-Glu/Thr254Ala, Ile263Val, and Lys511Gln - were indigenous to Korean strains. Although statistically significant differences appear in 4 sites between IDA (+) and (-), the number of specimens are too low to assess the real differences. Conclusion: The 4 polymorphisms in the feoB gene seem to be related with IDA, but it is unclear yet because of small number of study strains. Further studies are required to prove the correlation of IDA and H. pylori infection.

  • PDF

A Case of Childhood Cerebral Form Adrenoleukodystrophy with Novel Mutation in the ABCD1 Gene (새로운 ABCD1 유전자의 돌연변이를 가지는 소아 대뇌형 부신백질이영양증 1례)

  • Shin, Young-Lim
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.12 no.1
    • /
    • pp.49-53
    • /
    • 2012
  • X-linked adrenoleukodystrophy (ALD) is a rare inherited metabolic disease which results in impaired peroxisomal ${\beta}$-oxidation and the accumulation of very long chain fatty acids (VLCFA) in the adrenal cortex, the myelin of the central nervous system, and the testes. X-linked ALD is caused by mutations in the ABCD1 gene encoding an ATP-binding cassette transporter superfamily located in the peroxisomal membrane. This disease is characterized by a variety of phenotypes. The classic childhood cerebral ALD is a rapidly progressive demyelinating condition affecting the cerebral white matter before the age of 10 years in boys. We report the case of a 8-year-old with childhood cerebral X-linked ALD who developed inattention, hyperactivity, motor incoordination and hemiparesis. We diagnosed ALD with elevated plasma very long chain fatty acid level and diffuse high signal intensity lesions in both parieto-occipital white matter and cerebellar white matter in brain MRI. We identified a novel c.983delT (p.Met329CysfsX7) mutation of the ABCD1 gene. There is no correlation between X-ALD phenotype and mutations in the ABCD1 gene. Further studies for searching additional non-genetic factor which determine the phenotypic variation will be needed.

  • PDF

The Expression of Solute carrier family members Genes in Mouse Ovarian Developments (생쥐의 난소 발달과정에서 Solute carrier family 유전자들의 발현양상)

  • O, Lee-Gyun;Park, Chang-Eun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.1
    • /
    • pp.40-47
    • /
    • 2017
  • Granulosa cells, which surround the oocyte within the ovarian follicle, play an essential role in creating conditions required for the development of oocytes and follicles. The solute carrier family (SLC) is comprised of influx transporters of steroidal hormones, various drugs, and several other substrates. The differential expression of selected DEGs was confirmed using in situ hybridization analysis. SLC23A3 and SLC39A10 were highly expressed in the ovary. The SLC39A10 gene was expressed in the primordial follicle stage, but SLC23A3 was expressed in the growing follicle stage. Contrastingly, the expression of SLC23A3 was increased in granulosa cells at the growing follicle stage. The differential expressions of SLC23A3 and SLC39A10 between the primordial and primary follicles were additionally confirmed by using follicle isolations. The gene expression profile from the present study may provide insight for future studies on the mechanism(s) involved in primordial-primary follicular transition and suggestions to promote follicular development in ovarian dysfunction.

Differentially Expressed Genes in Hemocytes of Vibrio harveyi-challenged Shrimp Penaeus monodon

  • Somboonwiwat, Kunlaya;Supungul, Premruethai;Rimphanitchayakit, Vichien;Aoki, Takashi;Hirono, Ikuo;Tassanakajon, Anchalee
    • BMB Reports
    • /
    • v.39 no.1
    • /
    • pp.26-36
    • /
    • 2006
  • Differential Display PCR technique (DD-PCR) was used for the analysis of altered gene expression in hemocytes of Vibrio harveyi-infected Penaeus monodon. Forty-four combinations of arbitrary and oligo(dT) primers were used to screen for differentially expressed genes. A total of 79 differentially expressed bands could be identified from 33 primer combinations. These included 48 bands (61%) whose expression level increased and 31 bands (39%) decreased after V. harveyi challenge. Subsequently, forty-eight differential display fragments were successfully reamplified and cloned. A total of 267 clones were randomly selected and sequenced. The sequence analysis showed that 85 (31%) out of 267 clones were matched with sequences in the GenBank database which represented 24 different genes with known functions. Among the known genes, glucose transporter 1, interferon-related developmental regulator 1, lysozyme, profilin, SERPINB3, were selected for further confirmation of their differentially expression patterns by real-time PCR. The results showed increasing in expression level of the selected genes in shrimp hemocytes after microbial challenge suggesting the involvement of such genes in bacterial response in shrimp. The anti-lipopolysaccharide factor type 3 (ALFPm3) gene, previously reported in P. monodon (Supungul et al., 2002) was found among the up-regulated genes but diversity due to amino acid changes was observed. Increase in ALFPm3 transcripts upon V. harveyi injection is in accordance with that found in the previous study.

Species-specific variation of RPA-interacting protein (RIP) splice isoforms

  • Kim, Kwang-Soo;Lee, Eun-Ju;Lee, Seung-Hoon;Seo, Tae-Gun;Jang, Ik-Soon;Park, Jun-Soo;Lee, Je-Ho
    • BMB Reports
    • /
    • v.42 no.1
    • /
    • pp.22-27
    • /
    • 2009
  • Replication Protein A (RPA) is a single stranded DNA-binding protein involved in DNA metabolic activities such as replication, repair, and recombination. RPA-Interacting Protein $\alpha$ ($RIP{\alpha}$) was originally identified as a nuclear transporter of RPA in Xenopus. The human $RIP{\alpha}$ gene encodes several splice isoforms, of which $hRIP{\alpha}$ and $hRIP{\beta}$ are the major translation products in vivo. However, limited information is available about the alternative splicing of $RIP{\alpha}$ in eukaryotes, apart from that in humans. In this study, we examined the alternative splicing of RIP{\alpha} in the Drosophila, Xenopus, and mouse system. We showed that the number of splice isoforms of RIP{\alpha} was species-specific, and displayed a tendency to increase in higher eukaryotes. Moreover, a mouse ortholog of $hRIP{\alpha}$, $mRIP{\beta}2$, was not SUMOylated, in contrast to $hRIP{\alpha}$. Based on these results, we suggest that the $RIP{\alpha}$ gene gains more splice isoforms and additional modifications after molecular evolution.

An Association Study of the 5-HTTLPR and COMT Genes Polymorphisms and Personality Traits (5-HTTLPR과 COMT 유전자 다형성과 성격 특성에 대한 연합연구)

  • Ha, Jee-Hyun;Ham, Byung-Joo;Ryu, Sung-Gon;Hwang, Tae-Yeon;Lee, Jong-Gook;Lee, Yu-Sang;Lee, Jung-Sik;Kang, Dae Yeob;Choi, Ihn-Geun;Lee, Min Soo
    • Korean Journal of Biological Psychiatry
    • /
    • v.11 no.2
    • /
    • pp.88-93
    • /
    • 2004
  • Background:Serotonin transporter gene-linked polymorphism region(5-HTTLPR) and catechol-O-methyltransferase( COMT) genes are thought to be important factors in some personality traits and the etiology of anxiety disorder. The goal of this study was to determine the role of these genes in personality traits. Method:The participants included 116 healthy adults with no history of psychiatric disorders and other physical illness for the last 6 months. All participants were tested by Temperament and Character Inventory(TCI). The 5-HTTLPR, COMT val158met gene polymorphisms were analyzed with PCR(Polymerase Chain Reaction). Differences on TCI dimensions and sub-scales among groups were examined with t-test and ANOVA. Result:There were possible relationships of the 5-HTTLPR with self-transcendence(P=0.050) and COMT val158met polymorphism with cooperativeness(P=0.053). Conclusion:We found associations between 5-HTTLPR, COMT polymorphisms and the some TCI character dimensions. Further studies of polymorphisms of other genes and their interactions may clarify the complex relationship between personality and genes.

  • PDF

Drug resistance of bladder cancer cells through activation of ABCG2 by FOXM1

  • Roh, Yun-Gil;Mun, Mi-Hye;Jeong, Mi-So;Kim, Won-Tae;Lee, Se-Ra;Chung, Jin-Woong;Kim, Seung Il;Kim, Tae Nam;Nam, Jong Kil;Leem, Sun-Hee
    • BMB Reports
    • /
    • v.51 no.2
    • /
    • pp.98-103
    • /
    • 2018
  • Recurrence is a serious problem in patients with bladder cancer. The hypothesis for recurrence was that the proliferation of drug-resistant cells was reported, and this study focused on drug resistance due to drug efflux. Previous studies have identified FOXM1 as the key gene for recurrence. We found that FOXM1 inhibition decreased drug efflux activity and increased sensitivity to Doxorubicin. Therefore, we examined whether the expression of ABC transporter gene related to drug efflux is regulated by FOXM1. As a result, ABCG2, one of the genes involved in drug efflux, has been identified as a new target for FOXM1. We also demonstrated direct transcriptional regulation of ABCG2 by FOXM1 using ChIP assay. Consequently, in the presence of the drug, FOXM1 is proposed to directly activate ABCG2 to increase the drug efflux activation and drug resistance, thereby involving chemoresistance of bladder cancer cells. Therefore, we suggest that FOXM1 and ABCG2 may be useful targets and important parameters in the treatment of bladder cancer.

Haplotype Analysis and Single Nucleotide Polymorphism Frequency of Organic Cation Transporter Gene (OCT1 and 2) in Korean Subjects

  • Kim, Se-Mi;Lee, Sang-No;Yoon, Hwa;Kang, Hyun-Ah;Cho, Hea-Young;Lee, Il-Kwon;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.5
    • /
    • pp.345-351
    • /
    • 2009
  • Organic cation transporters (OCTs) are important for absorption, elimination of many endogenous small organic cations as well as a wide array of drugs and environmental toxins. This gene is located in a cluster on chromosome 6 and OCTs are in major organs such as intestine, liver, kidney, brain and placenta. Therefore, expression levels and function of OCTs directly affect plasma levels and intracellular concentrations of drugs and thereby determine therapeutic response. The aim of this study was to investigate the frequency of the SNPs on OCT1 (C181T and C1022T) and OCT2 (G808T) to analyze haplotype frequency in healthy Korean population. Human subjects have been genotyped for OCT1 (C181T for 195 subjects and C1022T for 825 subjects), using polymerase chain reaction-based diagnostic tests (RFLP). And for OCT2 (G808T), a total of 861 subjects have been genotyped, using pyrosequencing method. Haplotype was statistically inferred using an algorithm based on the expectation-maximization (EM). OCT1 C181T genotyping showed 100% homozygous wild-type (C/C). OCT1 C1022T genotyping showed wild-type (C/C), heterozygous (C/T) and homozygous mutant-type (T/T) and each accounted for 72.1, 24.5 and 3.4%, respectively. OCT2 G808T genotyping results also showed homozygous wild-type (G/G), heterozygous (G/T) and homozygous mutant-type (T/T) and each took 81.8, 17.9 and 0.3%, respectively. Based on these genotype data, haplotype analysis between OCT1 C181T and OCT1 C1022T has proceeded. The result has revealed that linkage disequilibrium between alleles is not obvious (P=0.0122).