• Title/Summary/Keyword: Transporter gene

Search Result 262, Processing Time 0.032 seconds

Genetic Analysis and Serological Detection of Novel O-Antigen Gene Clusters of Plesiomonas shigelloides

  • Wang, Xiaochen;Xi, Daoyi;Li, Yuehua;Yan, Junxiang;Zhang, Jingyun;Guo, Xi;Cao, Boyang
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.520-528
    • /
    • 2021
  • Plesiomonas shigelloides, a member of the family Vibrionaceae, is a gram-negative, rod-shaped, facultative anaerobic bacterium with flagella. P. shigelloides has been isolated from such sources as freshwater, surface water, and many wild and domestic animals. P. shigelloides contains 102 O-antigens and 51 H-antigens. The diversity of O-antigen gene clusters is relatively poorly understood. In addition to O1 and O17 reported by other laboratories, and the 12 O serogroups (O2, O10, O12, O23, O25, O26, O32, O33, O34, O66, O75, and O76) reported previously by us, in the present study, nine new P. shigelloides serogroups (O8, O17, O18, O37, O38, O39, O44, O45, and O61) were sequenced and annotated. The genes for the O-antigens of these nine groups are clustered together in the chromosome between rep and aqpZ. Only O38 possesses the wzm and wzt genes for the synthesis and translocation of O-antigens via the ATP-binding cassette (ABC) transporter pathway; the other eight use the Wzx/Wzy pathway. Phylogenetic analysis using wzx and wzy showed that both genes are diversified. Among the nine new P. shigelloides serogroups, eight use wzx/wzy genes as targets. In addition, we developed an O-antigen-specific PCR assay to detect these nine distinct serogroups with no cross reactions among them.

All-trans retinoic acid alters the expression of adipogenic genes during the differentiation of bovine intramuscular and subcutaneous adipocytes

  • Chung, Ki Yong;Kim, Jongkyoo;Johnson, Bradley J.
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1397-1410
    • /
    • 2021
  • The present study was designed to determine the influence of all-trans retinoic acid (ATRA) on adipogenesis-related gene regulation in bovine intramuscular (IM) and subcutaneous (SC) adipose cells during differentiation. Bovine IM and SC adipocytes were isolated from three 19-mo-old, crossbred steers. Adipogenic differentiation was induced upon cultured IM and SC preadipocytes with various doses (0, 0.001, 0.01, 0.1, 1 µM) of ATRA. After 96 h of incubation, cells were harvested and used to measure the gene expression of CCAAT/Enhancer binding protein β (C/EBPβ), peroxisome proliferator-activated receptor (PPAR) γ, glucose transporter 4 (GLUT4), stearoyl CoA desaturase (SCD), and Smad transcription factor 3 (Smad3) relative to the quantity of ribosomal protein subunit 9 (RPS 9). Retinoic acid receptor (RAR) antagonist also tested to identify the effect of ATRA on PPARγ -RAR related gene expression in IM cells. The addition of ATRA to bovine IM decreased (p < 0.05) expression of PPARγ. The expression of PPARγ was also tended to be downregulated (p < 0.1) in high levels (10 µM) of ATRA treatment in SC cells. The treatment of RAR antagonist increased the expression of PPARγ in IM cells. Expression of C/EBPβ decreased (p < 0.05) in SC, but no change was observed in IM (p > 0.05). Increasing levels of ATRA may block adipogenic differentiation via transcriptional regulation of PPARγ. The efficacy of ATRA treatment in adipose cells may vary depending on the location.

The effect of protease on growth performance, nutrient digestibility, and expression of growth-related genes and amino acid transporters in broilers

  • Park, Jae Hong;Lee, Sang In;Kim, In Ho
    • Journal of Animal Science and Technology
    • /
    • v.62 no.5
    • /
    • pp.614-627
    • /
    • 2020
  • During the course of this trial, our team assessed the influence of protease upon the growth performance, the nutrient digestibility, and the expression of growth-related genes and amino acid transporters within the liver, muscle, and small intestines of broilers. During the first step, our team allocated 600 broilers into four dietary treatments for a period of 35 days in order to measure the growth performance and nutrient digestibility of the broilers selected. The separate treatments contained 10 replicates (15 birds per replicate). The treatments were composed of: 1) CON, basal diet; 2) T1, basal diet + 0.03% protease; 3) T2, basal diet + 0.06% protease; and 4) T3, basal diet + 0.09% protease. Next, the broiler chick sample tissue was harvested from the CON and T3 groups in order to conduct gene expression analysis following the feeding trials the broilers underwent. Our team discovered that the broilers fed protease diets possessed increased body weight and an average daily gain, but conversely, had lower feed conversion ratios when their dietary protease levels increased from 0% to 0.09% (p < 0.05). Additionally, significant linear improvements were identified among the nutrient digestibility of dry matter, crude protein, energy, and amino acids within broilers supplied with protease diets when contrasted and compared with broilers supplied with the basal diet (p < 0.05). In addition, the gene expression of the genes IGF1, IGF2, GH, and LEP in the liver, and the genes MYOD1 and MYOG in the breast muscles, was significantly increased after broilers were fed with a protease diet as compared to broilers that subsisted on a basal diet (p < 0.05). Protease supplementation also raised the expression levels within these amino acid transporters: SCL6A19, SLC7A1, SLC7A7, SLC7A2, SLC7A6, SLC7A9, and SLC15A1, located in the small intestine, when compared to the basal diet (p < 0.05). Our results suggest that protease supplementation in their diet improved the growth performance of broilers via an increase in the expression growth-related genes within broiler liver and muscle tissue. In addition, protease supplementation enhanced broiler digestibility via the upregulation of amino acid transporter expression within the small intestine.

Fibrinogen mRNA Expression Up-Regulated in Follicular Cyst of Korean Cattle (한우 난포낭종에서 증가되는 섬유소원 유전자 발현)

  • Tak, Hyun-Min;Han, Jae-Hee;Kang, Da-Won
    • Journal of Embryo Transfer
    • /
    • v.25 no.1
    • /
    • pp.29-34
    • /
    • 2010
  • Follicular cystic ovary (FCO) is one of the major causes of reproductive failure in cattle. Genetic alterations affect the function of diverse cells and/or tissues, which could be present in cystic ovaries. A microarray analysis was performed to screen differential gene expressions in follicular cystic follicles of cattle. In this study, we hypothesized that follicular cysts may be induced by changes in ion- and transporter-related gene expression. Microarray data showed that fibrinogen-gamma (FGG) and low density lipoprotein receptor-related protein 8 (LRP8) were up-regulated, while choline transporter-like protein 4 (SLC44A4), very long-chain acyl-CoA synthetase homolog 2 (SLC27A5), annexin 8 (ANXA8), and aquaporin 4 were down-regulated in follicular cystic follicles. A semi-quantitative RT-PCR was carried out to validate DEGs altered in follicular cystic follicles. Of six DEGs, three DEGs (FGG, SLC44A4, and aquaporin 4) showed a positive correlation between microarray and semi-quantitative PCR data. We focused on FGG, among three DEGs, which was highly up-regulated in follicular cystic follicles. The FGG mRNA was upregulated by 8.4-fold and by 1.7-fold in the bovine follicular cystic follicles as judged by microarray and RT-PCR analysis, respectively. However, there was no significant changes in the expression level of FGG protein in both follicular cystic follicles and granulosa cells isolated from follicular cystic follicles by Western blot analysis. Although this study does not reveal a positive correlation between the mRNA and protein level, FGG appears to be an important biomarker in the discrimination of follicular cyst from normal ovary.

Effect of Copper on the Regulation of Ferroportin-1 Gene Expression (구리가 Ferroportin-1 유전자 발현 조절에 미치는 영향)

  • Park, Bo-Yoen;Chung, Ja-Yong
    • Journal of Nutrition and Health
    • /
    • v.42 no.5
    • /
    • pp.434-441
    • /
    • 2009
  • Ferroportin-1 (FPN) is a transporter protein that is known to mediate iron export from macrophages. The purpose of this study was to investigate the effect of copper on the regulation of FPN gene expression in J774 mouse macrophage cells. J774 cells were treated with various concentrations of $CuSO_4$ and RT-PCR analyses were performed to measure the steady-state levels of mRNAs for FPN and divalent metal transporter 1 (DMT1, an iron importer). Copper treatment significantly increased FPN mRNAs in a dose-dependent manner, but didn't change the levels of DMT1 mRNA. Experiments with transcriptional inhibitor actinomycin D (0.5 ${\mu}g$/mL) revealed that copper treatment did not affect the half-life of FPN mRNAs in J774 cells. On the other hand, results from luciferase reporter assays showed that copper directly stimulated the promoter activity of FPN. In summary, our data showed copper induced FPN mRNA of macrophages via a transcriptional rather than post-transcriptional mechanisms.

Insulin-like Growth Factor-I Induces FATP1 Expression in C2C12 Myotubes (C2C12 myotube에서 Insulin-like growth factor-I 이 FATP1 발현에 미치는 영향)

  • Kim, Hye Jin;Lee, Won Jun
    • Journal of Life Science
    • /
    • v.24 no.12
    • /
    • pp.1284-1290
    • /
    • 2014
  • Fatty acid transporter protein 1 (FATP1) is highly expressed in skeletal muscle and modulates fatty acid uptake and metabolism. However, the influence of insulin-like growth factor-I (IGF-I), a master regulator of skeletal muscle cells, on FATP1 in skeletal muscle cells has not been demonstrated. To investigate the effect of IGF-I on FATP1 and the expression of the IGFBP5 protein, differentiated C2C12 murine skeletal muscle cells were treated with 20 ng/ml of IGF-I at different time points. The results showed that IGF-I increased FATP1 and IGFBP5 protein expression in a time-dependent manner. To determine whether this induction of FATP1 by the IGF-I treatment was regulated pretranslationally, the mRNA level of FATP1 was measured by real-time quantitative PCR. The IGF-I treatment resulted in very rapid induction of the FATP1 mRNA transcript in C2C12 myotubes. FATP1 mRNA increased 169% and 132% after 24 and 48 h of the IGF-I treatment, respectively, and it returned to control levels after 72 h of the treatment, suggesting that the FATP1 gene is regulated pretranslationally by IGF-I in skeletal muscle cells. This is the first evidence that IGF-I can regulate the expression of FATP1. In conclusion, IGF-I induced rapid transcriptional modification of the FATP1 gene in C2C12 skeletal muscle cells and had modulating effects on fatty acid uptake proteins and oxidative proteins.

Identification and Functional Characterization of P159L Mutation in HNF1B in a Family with Maturity-Onset Diabetes of the Young 5 (MODY5)

  • Kim, Eun Ky;Lee, Ji Seon;Cheong, Hae Il;Chung, Sung Soo;Kwak, Soo Heon;Park, Kyong Soo
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.240-246
    • /
    • 2014
  • Mutation in HNF1B, the hepatocyte nuclear factor-$1{\beta}$ (HNF-$1{\beta}$) gene, results in maturity-onset diabetes of the young (MODY) 5, which is characterized by gradual impairment of insulin secretion. However, the functional role of HNF-$1{\beta}$ in insulin secretion and glucose metabolism is not fully understood. We identified a family with early-onset diabetes that fulfilled the criteria of MODY. Sanger sequencing revealed that a heterozygous P159L (CCT to CTT in codon 159 in the DNA-binding domain) mutation in HNF1B was segregated according to the affected status. To investigate the functional consequences of this HNF1B mutation, we generated a P159L HNF1B construct. The wild-type and mutant HNF1B constructs were transfected into COS-7 cells in the presence of the promoter sequence of human glucose transporter type 2 (GLUT2). The luciferase reporter assay revealed that P159L HNF1B had decreased transcriptional activity compared to wild-type (p < 0.05). Electrophoretic mobility shift assay showed reduced DNA binding activity of P159L HNF1B. In the MIN6 pancreatic ${\beta}$-cell line, overexpression of the P159L mutant was significantly associated with decreased mRNA levels of GLUT2 compared to wild-type (p < 0.05). However, INS expression was not different between the wild-type and mutant HNF1B constructs. These findings suggests that the impaired insulin secretion in this family with the P159L HNF1B mutation may be related to altered GLUT2 expression in ${\beta}$-cells rather than decreased insulin gene expression. In conclusion, we have identified a Korean family with an HNF1B mutation and characterized its effect on the pathogenesis of diabetes.

Isolation of New CHO Cell Mutants Defective in CMP-Sialic Acid Biosynthesis and Transport

  • Shin, Dong-Jun;Kang, Ji Young;Kim, Youn Uck;Yoon, Joong Sik;Choy, Hyon E;Maeda, Yusuke;Kinoshita, Taroh;Hong, Yeongjin
    • Molecules and Cells
    • /
    • v.22 no.3
    • /
    • pp.343-352
    • /
    • 2006
  • Sialic acid is a sugar typically found at the N-glycan termini of glycoproteins in mammalian cells. Lec3 CHO cell mutants are deficient in epimerase activity, due to a defect in the gene that encodes a bifunctional UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE). Sialic acid modification on the cell surface is partially affected in these cells. We have mutagenized Lec3 CHO cells and isolated six mutants (termed C2m) deficient in the cell surface expression of polysialic acid (PSA). Mutant C2m9 was partially defective in expression of cell-surface PSA and wheat germ agglutinin (WGA) binding, while in the other five mutants, both cell-surface PSA and WGA binding were undetectable. PSA expression was restored by complementation with the gene encoding the CMP-sialic acid transporter (CST), indicating that CST mutations were responsible for the phenotypes of the C2m cells. We characterized the CST mutations in these cells by Northern blotting and RT-PCR. C2m9 and C2m45 carried missense mutations resulting in glycine to glutamate substitutions at amino acids 217 (G217E) and 256 (G256E), respectively. C2m13, C2m39 and C2m31 had nonsense mutations that resulted in decreased CST mRNA stability, and C2m34 carried a putative splice site mutation. PSA and CD15s expression in CST-deficient Lec2 cells were partially rescued by G217E CST, but not by G256E CST, although both proteins were expressed at similar levels, and localized to the Golgi. These results indicate that the novel missense mutations isolated in this study affect CST activity.

The Abuse Potential of α-Piperidinopropiophenone (PIPP) and α-Piperidinopentiothiophenone (PIVT), Two New Synthetic Cathinones with Piperidine Ring Substituent

  • Botanas, Chrislean Jun;Yoon, Seong Shoon;de la Pena, June Bryan;dela Pena, Irene Joy;Kim, Mikyung;Woo, Taeseon;Seo, Joung-Wook;Jang, Choon-Gon;Park, Kyung-Tae;Lee, Young Hun;Lee, Yong Sup;Kim, Hee Jin;Cheong, Jae Hoon
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.122-129
    • /
    • 2017
  • A diversity of synthetic cathinones has flooded the recreational drug marketplace worldwide. This variety is often a response to legal control actions for one specific compound (e.g. methcathinone) which has resulted in the emergence of closely related replacement. Based on recent trends, the nitrogen atom is one of the sites in the cathinone molecule being explored by designer type modifications. In this study, we designed and synthesized two new synthetic cathinones, (1) ${\alpha}-piperidinopropiophenone$ (PIPP) and (2) ${\alpha}-piperidinopentiothiophenone$ (PIVT), which have piperidine ring substituent on their nitrogen atom. Thereafter, we evaluated whether these two compounds have an abuse potential through the conditioned place preference (CPP) in mice and self-administration (SA) in rats. We also investigated whether the substances can induce locomotor sensitization in mice following 7 days daily injection and challenge. qRT-PCR analyses were conducted to determine their effects on dopamine-related genes in the striatum. PIPP (10 and 30 mg/kg) induced CPP in mice, but not PIVT. However, both synthetic cathinones were not self-administered by the rats and did not induce locomotor sensitization in mice. qRT-PCR analyses showed that PIPP, but not PIVT, reduced dopamine transporter gene expression in the striatum. These data indicate that PIPP, but not PIVT, has rewarding effects, which may be attributed to its ability to affect dopamine transporter gene expression. Altogether, this study suggests that PIPP may have abuse potential. Careful monitoring of this type of cathinone and related drugs are advocated.

Bosentan and Rifampin Interactions Modulate Influx Transporter and Cytochrome P450 Expression and Activities in Primary Human Hepatocytes

  • Han, Kyoung-Moon;Ahn, Sun-Young;Seo, Hyewon;Yun, Jaesuk;Cha, Hye Jin;Shin, Ji-Soon;Kim, Young-Hoon;Kim, Hyungsoo;Park, Hye-kyung;Lee, Yong-Moon
    • Biomolecules & Therapeutics
    • /
    • v.25 no.3
    • /
    • pp.288-295
    • /
    • 2017
  • The incidence of polypharmacy-which can result in drug-drug interactions-has increased in recent years. Drug-metabolizing enzymes and drug transporters are important polypharmacy modulators. In this study, the effects of bosentan and rifampin on the expression and activities of organic anion-transporting peptide (OATP) and cytochrome P450 (CYP450) 2C9 and CYP3A4 were investigated in vitro. HEK293 cells and primary human hepatocytes overexpressing the target genes were treated with bosentan and various concentrations of rifampin, which decreased the uptake activities of OATP transporters in a dose-dependent manner. In primary human hepatocytes, CYP2C9 and CYP3A4 gene expression and activities decreased upon treatment with $20{\mu}M$ $bosentan+200{\mu}M$ rifampin. Rifampin also reduced gene expression of OATP1B1, OATP1B3, and OATP2B1 transporter, and inhibited bosentan influx in human hepatocytes at increasing concentrations. These results confirm rifampin- and bosentan-induced interactions between OATP transporters and CYP450.