• Title/Summary/Keyword: Transportation temperature

Search Result 762, Processing Time 0.022 seconds

Temperature Control Algorithm for Reefer Container (냉동컨테이너 온도 제어 알고리즘에 관한 연구)

  • Moon, Young-Sik;Park, Shin-Jun;Jung, Jun-Woo;Choi, Hyung-Rim;Kim, Jae-Joong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.12
    • /
    • pp.2380-2386
    • /
    • 2017
  • Fresh agricultural product in Korea are currently being exported overseas through expensive air transportation, supported by the governments's farm export subsidies. However all members of the World Trade Organization(WTO) must halt government subsidies by 2023. Accordingly, it is necessary to use marine transport capable of carrying freight at low cost. Reefer containers are used for marine transportation of fresh produce but it have a problem due to the temperature difference inside the reefer container which causes of fresh cargo and drop in freshness during sea transportation. In order to solve the problem, we developed a temperature control algorithm for reefer container that maintain a constant temperature and minimizes the deviation inside reefer container. The result showed that the maintained a constant temperature within a maximum of $0.5^{\circ}C$ based on the set-point of $4.0^{\circ}C$ inside reefer container.

A Study on the Quality Control for the Circulation Steps including Productipn, Transportation, Selling about Hamburger & Sandwich in Convenience Store (편의점에서 판매되는 햄버거와 샌드위치의 유통과정중 품질관리에 관한 연구)

  • Kim, Heh-Young;Song, Yong-Hye
    • Journal of the Korean Society of Food Culture
    • /
    • v.11 no.4
    • /
    • pp.465-473
    • /
    • 1996
  • The purpose of this study was to evaluate microbiological hazards in the steps of production, transportation and selling of hamburger and sandwich that were marketed in CVS, then to identify methods of control. The reasults are as follows: As the reasult of operation surroundings of manufacturerand reserch of circulation, $4{\sim}6$ hours are needed from manufacturer to CVS. Also transportation car mean temperature was $10^{\circ}C$ which exceeds the standard of $7^{\circ}C$ or below. Hamburger: Critical control points identified were purchasing, cooking, post-preparation, transportation and holding at CVS. As the reasult of microbial analysis following the case of holding methods and reheating at CVS, microbes of cold holding and reheat after cold holding was within standard value. But in the case of room temperature microbes exceeded standard value. Sandwich: Critical control points identified were purchasing, cooking, post-preparation, transportation and holding at CVS. As the reasult of microbial analysis following the case of holding methods and reheating at CVS, total plate counts of cold holding and reheat after cold holding was within standard value. But in the case of room temperature holding after 24 hours total plate counts exceeded standard value. In the case of room temperature holding the number of microbes increased according to the passage of time. As a reasult of food poisoning bacteria, it was negative in every test in sample against V. parahaemolyticus, Salmonella, S. aureus.

  • PDF

An Experimental Study on Generation and Measurement Method of EG/AD Model Ice at Cold Room for Improvement of Its Properties (EG/AD 모형빙 정도 향상을 위한 콜드룸에서의 생성기법 및 계측기법 연구)

  • Cho, Seong-Rak;Jeong, Seong-Yeob;Ha, Jung-Seok;Kang, Kuk-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.6
    • /
    • pp.414-420
    • /
    • 2013
  • Generation and measurement methods of EG/AD model ice, which is used in KIOST ice model basin are investigated for improvement of its properties. Temperature of seed water, air temperature in the freezing phase and the target air temperature in the tempering phase were changed in the cold room, and the properties of model ice was measured in this conditions. We also verified a conventional measuring method of flexural strength of model ice caused a little measuring error in cold room, so that we suggested a new measuring method that must be used higher supports than double the thickness of the model ice. In this study, we improved the generation and measurement technique of EG/AD model ice, and the developed procedure at cold room can be applied to the KIOST ice model basin.

Study on the Dielectric Characteristics of Gaseous Nitrogen for Designing a High Voltage Superconducting Fault Current Limiter

  • Heo, Jeong-Il;Hong, Jong-Gi;Nam, Seok-Ho;Kang, Hyoung-Ku
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.2
    • /
    • pp.28-31
    • /
    • 2012
  • The study on the dielectric characteristics of gaseous insulation medium is important for designing current leads of superconducting machines using a sub-cooled liquid nitrogen ($LN_2$) cooling method. In a sub-cooled $LN_2$ cooling system, the temperature of gaseous insulation medium surrounding current leads varies from the temperature of coolant to 300 K according to the displacement between the electrode system and the surface of sub-cooled $LN_2$. In this paper, AC withstand voltage experiments on gaseous nitrogen according to temperature are conducted. Also, AC withstand voltage experiments on gaseous nitrogen according to pressure, size of electrode, and gap length between two electrodes are performed. It is found that there is a functional relation between the electrical breakdown voltage and the field utilization factor (${\xi}$). As a result, the empirical formula for estimating an electrical breakdown voltage is deduced by adopting the concept of field utilization factors. It is expected that the experimental results presented in this paper are helpful to design current leads for a high voltage superconducting apparatus such as a superconducting fault current limiter (SFCL) using a sub-cooled $LN_2$ cooling system.

Feasibility of the Defrost Control by Photoelectric Technology via Comparison with the Temperature Differential Defrosting Method (온도차 감지 제상법과의 비교를 통한 광센서 제상법의 타당성 검증을 위한 연구)

  • Jeon, Chang-Duk;Kim, Dong-Seon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.9
    • /
    • pp.434-440
    • /
    • 2014
  • Experiments were performed to verify if performance and characteristic curves obtained from the temperature differential defrosting method, where surface temperature is measured to judge defrosting condition, can be reproduced by the photoelectric technology where defrosting condition is judged by photoelectric sensors. The output voltage of a phototransistor and heating capacity, power consumption, and surface temperature of the outdoor heat exchanger are compared. The results showed that the photoelectric sensors can be used as a defrost control device. On-off control timings in temperature differential defrosting method are in good agreement with those predicted by the high and low threshold output voltages of the photoelectric sensor.

Optimizing of Diffusion Condition in Spin on Doping for c-Si Solar Cell (스핀 도핑을 이용한 단결정 실리콘 태양전지 확산 공정 최적화)

  • Yeo, In Hwan;Park, Ju Eok;Kim, Jun Hee;Cho, Hae Sung;Lim, Donggun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.5
    • /
    • pp.410-414
    • /
    • 2013
  • Rapid thermal processing (RTP) abruptly decreases the time required to perform solar cell processes. RTP were used to form emitter of crystalline silicon solar cells. The emitter sheet resistance is studied as a function of time and temperature. The objective of this study is reduction of doping process time with same performance. Emitter difRapid thermal dfusion was carried out by using a spin on doping and a RTP. iffusion was performed in the temperature range of $700{\sim}750^{\circ}C$ for 1m 30s~15 m. Thermal budgets yielded a $50{\Omega}/sq$ emitter using a P509 source. To reduce process time and get high efficiency, rapid thermal diffusion by IR lamp was employed in air atmosphere at $700^{\circ}C$ for 15 m.

Properties of Non-dispersive infrared Ethanol Gas Sensors according to the Irradiation Energy

  • Kim, JinHo;Yi, SeungHwan
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.168-172
    • /
    • 2017
  • A nondispersive infrared (NDIR) ethanol gas sensor was prototyped with ASIC implemented thermopile sensor, which included a temperature sensor and two ellipsoidal waveguide structures. The temperature dependency of the two ethanol sensors (with partially blocked and intact structures) has been characterized. The two ethanol gas sensors showed linear output voltages initially when varying the ambient temperature from 253 K to 333 K. The slope of the temperature sensor presented a constant value of 15 mV/K. After temperature compensation, the ethanol gas sensor estimated ethanol concentrations with larger errors of 20 to 25% below 200 ppm. However, the estimation errors were reduced to between -10 and +1 % from 253 K to 333 K above 200 ppm ethanol gas concentration in this research.

Temperature Dependency of Non-dispersive Infrared Carbon Dioxide Gas Sensor by Using White-Cell Structure (White-Cell 구조를 응용한 비분산 적외선 이산화탄소 센서의 온도특성)

  • Yi, SeungHwan;Park, YoungHwan;Lee, JaeKyung
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.377-381
    • /
    • 2016
  • NDIR $CO_2$ gas sensor was prototyped with ASIC implemented thermopile sensor which included temperature sensor and White-Cell structure in this paper. The temperature dependency of dual infrared sensors ($CO_2$ and reference IR sensors) has been characterized and their output voltage ratios according to the temperature and gas concentration were presented in this paper for achieving temperature compensation algorithm. The initial output voltages of NDIR $CO_2$ gas and reference IR sensors showed $3^{rd}$ order polynomial and linear output voltages according to the variation of ambient temperatures from 253 K to 333 K, respectively. The output voltages of temperature sensor presented a linear dependency according to the ambient temperature and could be described with V(T) = -3.0069+0.0145T(V). The characteristics of output voltage ratios could be modeled with five parameters which are dependent upon the ambient temperatures and gas concentration. The estimated $CO_2$ concentrations showed relatively high error below 300 ppm (maximum 572 % at 7 ppm $CO_2$ concentration), however, as the concentration increased from 500 ppm to 2,000 ppm, the overall estimated errors of $CO_2$ concentrations were less than ${\pm}10%$ in this research.

Heat Transfer Experiment and Analysis to Predict the Efficiency of Heat Exchanger for Deep Geothermal System (심부지열 용 동축 열교환기 성능예측을 위한 열전달 실험 및 해석)

  • Jung, Kuk-Jin;Jeong, Yoon-Seong;Park, Jun Su;Lee, Dong Hyun
    • Journal of Institute of Convergence Technology
    • /
    • v.7 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • The Heat exchanger for deep geothermal system is very important to enhance the efficiency of the system. The co-axial heat exchanger is used due to the limitation of digging space. The heat transfer on the external surface of outer pipe should be high to receive a large amount of heat from the ground. However, the inner pipe should be insulated to reduce the heat loss and increase the temperature of discharge water. This study made experiment apparatus to describe the co-axial heat exchanger and measure the heat transfer coefficients on the internal and external surface. And the pin-fin was designed and fixed on the internal surface to increase the efficiency of heat exchanger. Finally, we calculated the temperature of discharge water using the heat transfer circuit of co-axial heat exchanger and heat transfer coefficient which from experimental results. The water temperature was reached the ground temperature at -500 m and following the ground temperature. When the water return to the ground surface, the water temperature was decreased due to heat loss. As the pin-fin case, the heat transfer coefficient on the internal surface was decreased by 30% and it mean that the pin-fin help to insulate the inner pipe. However, the discharge water temperature did not change although pin-fin fixed on the inner pipe.

Temperature Compensation and Characteristics of Non-dispersive Infrared Alcohol Sensor According to the Intensity of Light (입사광량의 조절과 이에 따른 비분산 적외선 알코올 센서의 온도 특성과 보정)

  • Kim, JinHo;Cho, HeeChan;Yi, SeungHwan
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.47-54
    • /
    • 2018
  • In this paper, we describe the thermal characteristics of the output voltages of ethanol gas sensor according to the amount of radiation incident on the infrared sensors located at each focal point of two elliptical waveguides. In order to verify the output characteristics of the gas sensor according to the amount of incident light on the infrared sensor, two combinations of sensor modules were fabricated. Hydrophobic thin film is deposited on one of the reflectors of sensor modules and one of the two infrared sensors was equipped with a hollow disk (10 Ø), and the temperature characteristics of the infrared sensor equipped with the hollow disk (10 Ø) and the infrared sensor without the disk were tested. The temperature was varied from 253 K to 333 K at 10 K intervals based on 298 K. The properties of ethanol gas sensor have been identified with respect to varying temperature for a range of ethanol concentration from 0 ppm to 500 ppm. In the case of an infrared sensor equipped with a hollow disk (10 Ø), the output voltage of the sensor decreased by 0.8 mV and 1 mV, respectively, as the temperature increased. Conversely, the output voltage of the diskless infrared sensor showed an average increase of 67 mV and 57 mV as the temperature increased. The ethanol concentrations estimated on the basis of results show an error of more than 10 % for less than 100 ppm concentration. However, if the ethanol concentration exceeds 100 ppm, the gas concentration can be estimated within the range of ${\pm}10%$.