• Title/Summary/Keyword: Transport temperature

Search Result 1,512, Processing Time 0.047 seconds

Flow, Heat and Mass Transfer Analysis for Vertical Grooved Tube Evaporator (흠진 수직 증발관에서 유동 및 열/물질 전달 해석)

  • Park Il-Seouk;Choi Do Hyung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.108-113
    • /
    • 1998
  • A numerical investigation for the flow, heat and mass transfer characteristics of the grooved evaporating tube with the films flowing down on both the inside and outside tube walls has been carried out. The condensation occurs along the outside wall while the evaporation takes place at the free surface of the inside film. The 3-D transport equations for momentum and energy are solved by using the FVM(Finite Volume Method). The free surface shape is tracked by the moving grid technique satisfying the SCL(Space Conservation Rule). Due to the secondary motion of the fluid, the film thins at the crest, while thickens at the valley. The velocity and temperature fields as well as the amounts of the condensed and evaporated mass have been successfully predicted for various operating conditions and groove shapes.

  • PDF

Dynamic Free-surface Deformations in Axisymmetric Liquid Bridges

  • Sim B.-C.;Kim W.-S.;Zebib A.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.160-161
    • /
    • 2003
  • Thermocapillary convection is a surface tension driven flow due to a temperature gradient along an interface. It occurs during a crystal-growth process and therefore understanding the convection is important to material processing in microgravity. Although modelling of the float-zone crystal-growth process has been of interest for a few decades, most studies of liquid bridges assumed non-deformable flat surfaces. In reality, the surface profile, g(t,z), is unknown and should be obtained as a solution to the coupled transport equations along with the surface force balance. Here we report on a numerical study of axisymmetric thermocapillary convection in liquid bridges with deformable surfaces. The interface is determined as part of the complete solution. The influence of the capillary number (Ca), Reynolds number (Re), Prandtl number (Pr) and aspect ratio(Ar) on the dynamics is explored.

  • PDF

NUMERICAL ANALYSIS OF NON-EQUILIBRIUM HYDRATE PELLET DECOMPOSITION (하이드레이트 펠릿의 비평형 분해과정 수치해석)

  • Kang, Jung-Ho;Nam, Jin-Hyun;Kim, Charn-Jung;Song, Myung-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.268-275
    • /
    • 2008
  • The prediction of hydrate pellet decomposition characteristics is required to design the regasification process of GTS (gas to solid) technology, which is considered as an economic alternative for LNG technology to transport natural gas produced from small and stranded gas wells. Mathematical model based on the conservation principles, the phase equilibrium relation, equation of gas state and phase change kinetics was set up and numerical solution procedure employing volume averaged fixed grid formulation and extended enthalpy method are implemented. Initially, porous methane hydrate pellet is at uniform temperature and pressure within hydrate stable region. The pressure starts to decrease with a fixed rate down to the final pressure and is kept constant afterwards while the bounding surface of pellet is heated by convection. The predicted convective heat and mass transfer accompanied by the decomposed gas flow through hydrate/ice solid matrix is reported focused on the comparison of spherical and cylindrical pellets having the same effective radius.

  • PDF

Heat Transfer Characteristics of Loop Type Capillary Heat Pipe using R141b as a Working Fluid (R141b를 이용한 루프 세관형 히트파이프의 열전달특성)

  • Kim, Hoon;Ha, Sung-Man;Kim, Tag-Yong;Jeon, Kyung-Whan;Choi, Jae-Hyuck;Yoon, Seok-Hun
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.256-257
    • /
    • 2005
  • This paper has been carried out to investigate heat transfer characteristics of loop type capillary heat pipe using R141b as a working fluid. In an experiment heat load are changed from 50W to 250W and the temperature of cooling water is fixed to 20$^{circ}C$ . The heat pipe is composed of 10 turns and outer diameter of heat pipe is 3.2mm. The results show that heat transport rate of this type heat pipe using R141b as a working fluid is good.

  • PDF

An Analytic Study on Flooding Heat Transport Limitation for a PFC Two-phase Closed Thermosyphon (PFC 열사이폰의 플러딩 한계에 대한 해석적 연구)

  • Lee, Jin-Sung;Kim, Chul-Ju
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.285-290
    • /
    • 2000
  • The present study was conducted to determine flooding heat transfer limitation of a two-phase closed thermosyphon using PFC as working fluid. The variables such as pipe inner diameter, working fluid property, operating temperature were examined by way of analytic method. Comparison of experimental data on flooding heat transfer limitation shows a fairly good agreement with the analytic results. An expression fur flooding maximum heat transfer rate was formulated as a function of Bond number and saturation pressure and written as follows ; $Q_{max} =0.989{\cdot}P_s^{0.286}{\cdot}Bo^{1.74}$.

  • PDF

NUMERICAL ANALYSIS OF NON-EQUILIBRIUM HYDRATE PELLET DECOMPOSITION (하이드레이트 펠릿의 비평형 분해과정 수치해석)

  • Kang, Jung-Ho;Nam, Jin-Hyun;Kim, Charn-Jung;Song, Myung-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.268-275
    • /
    • 2008
  • The prediction of hydrate pellet decomposition characteristics is required to design the regasification process of GTS (gas to solid) technology, which is considered as an economic alternative for LNG technology to transport natural gas produced from small and stranded gas wells. Mathematical model based on the conservation principles, the phase equilibrium relation, equation of gas state and phase change kinetics was set up and numerical solution procedure employing volume averaged fixed grid formulation and extended enthalpy method are implemented. Initially, porous methane hydrate pellet is at uniform temperature and pressure within hydrate stable region. The pressure starts to decrease with a fixed rate down to the final pressure and is kept constant afterwards while the bounding surface of pellet is heated by convection. The predicted convective heat and mass transfer accompanied by the decomposed gas flow through hydrate/ice solid matrix is reported focused on the comparison of spherical and cylindrical pellets having the same effective radius.

  • PDF

The application of separate type thermosyphon for cooling of electronic equipments (전자 장비 냉각에 있어서의 분리형 써모사이펀의 적용)

  • Kim J.H;Park S.B.;Yoon J.H.;Kim S.P;Jun C.H
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.725-728
    • /
    • 2002
  • A separate type thermosyphon can be utilized as a cooling device of electronic equipments (such as CPU of a personal computer or notebook). This study was carried out to investigate the cooling effect of separate type thermosyphon and to find the adequate parameters affecting the separate type thermosyphon. The heat transfer characteristics of separate type thermosyphon were obtained from experimental results. A $50{\times}50{\times}2 mm$ heat source was copied after CPU for the experiments. The results indicate that the device is capable of dissipating 60W of thermal energy and keeping the heat plate surface temperature under 50'E and the device can transfer heat from the evaporator to the condenser through natural circulation (without any external driving forces). Some transport phenomena of the working fluid and the heat transfer characteristics of the loop were observed in the experiments and are discussed in detail below.

  • PDF

An Experimental Study on Heat Transfer Performances in 8mm-diameter Heat Pipes with Screen Mesh Wick (스크린 메쉬 윅을 삽입한 8mm 히트파이프에서 열전달 성능에 관한 실험적 연구)

  • Park, Ki-Ho;Lee, Ki-Woo;Noh, Seung-Yong;Lee, Kye-Jung;Yoo, Seong-Yeon
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.48-53
    • /
    • 2001
  • This experimental study is to research heat transfer characteristics in copper-water heat pipes with screen wick, the 150 and 200-mesh. Recent advances in the miniaturization and large capacity of electronic devices have had a major impact on the design of electronic equipment. As a result, a high-performance cooling system is needed. Experimental variables are inclination angle, number of layer and temperature of cooling water. The distilled water was used for the working fluid. At a inclination angle $6^{\circ}$, the 200-mesh screen wick 3-layer is shown the best heat transfer performance.

  • PDF

A Study on the Modeling of Pt-Catalyzed Reaction and the Characteristics of Mass Transfer in a Micro-Scale Combustor (마이크로 스케일 연소기의 백금 촉매 반응 모델링과 물질 전달 특성에 대한 연구)

  • Lee, Gwang-Goo;Suzuki, Yuji
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.11
    • /
    • pp.870-877
    • /
    • 2008
  • Numerical analysis is applied to model Pt-catalyzed reaction in a micro-scale combustor fueled by butane. The reaction constants of catalytic oxidation are determined from plug flow model with the experimental data. Orders of magnitude between the chemical reaction rate and the mass transfer rate are carefully compared to reveal which mechanism plays a dominant role in the total fuel conversion rate. For various conditions of fuel flow rate and surface temperature, the profiles of Sherwood number are investigated to study the characteristics of the mass transport phenomena in the micro-tube combustor.

On Conditions of Phytoplankton Blooms in the Coastal Waters of the North-Western East/Japan Sea

  • Zuenko, Yury;Selina, Marina;Stonik, Inna
    • Ocean Science Journal
    • /
    • v.41 no.1
    • /
    • pp.31-41
    • /
    • 2006
  • Seasonal changes of abundance of the main phytoplankton groups of species (diatoms, dinoflagellates, chrysophytes, small flagellates and cryptophytes) and a set of environmental parameters were investigated in coastal and pre-estuarine waters of Peter the Great Bay (East/Japan Sea) in May-October of 1998 and 1999. Three periods of mass development were revealed: spring, summer and autumn blooms, with successive change of species. The conditions favourable for each group of species were determined. Driving mechanisms of the succession include nutrients transport through seasonal pycnocline by turbulent mixing, terrestrial nutrients supply by monsoon floods, nutrients supply by upwellings, and light control by the thickness of upper mixed layer. Summer succession could be explained by a simple SST-MLD diagram similar to Pingree S-kh diagram with sea surface temperature as indicator of stratification (S) and mixed layer depth as indicator of light availability (kh).