• Title/Summary/Keyword: Transport speed

Search Result 929, Processing Time 0.025 seconds

An Analysis of Test Results Using the New Fusion Weight Conversion Algorithm for High-speed Weigh-In-Motion System (주행시험을 통한 고속축중기의 융합형 중량환산 알고리즘 효과 분석)

  • Kim, Jong Woo;Jung, Young Woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.4
    • /
    • pp.67-80
    • /
    • 2020
  • High-speed weigh in motion (HS-WIM) is a real-time unmanned system for measuring the weight of a freight-carrying vehicle while it is in motion without controlling vehicle traffic flow or deceleration. In Korea, HS-WIM systems are installed on the national highways and general national ways for pre-selection by law enforcement. In this study, to improve the measurement accuracy of HS-WIM, we devise improvements to the existing integral and peak weight conversion algorithms, and we provide a new fusion algorithm that can be applied to the mat-type HS-WIM. As a result of analyzing vehicle driving tests at a real site, we confirmed the highest level of weight-measuring accuracy.

Development of an Effectiveness Analysis Tool for Freeway Tollgate Entrance Control (고속도로 톨게이트 진입제어용 효과분석 툴의 개발)

  • Lee, Hwan-Pil;Yun, Il-Soo;Oh, Young-Tae;Kim, Soo-Hee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.3
    • /
    • pp.1-12
    • /
    • 2012
  • This paper aims at developing an active expressway entrance control effectiveness analysis tool which operators can utilize and manage traffic based on current traffic condition. For this, after identifying the current problems of tollgate-based entrance policy being used, a new set of decision element such as congestion index, decision criteria for congestion, and congestion management unit has been proposed together with the procedure of newly developed tollgate control policy. Three key parts developed are traffic condition identification module, tollgate metering module, and travel speed calculation module. Some measures of effectiveness were also identified and the newly developed effectiveness analysis tool produced better result. According to classification of traffic condition by reference speed as 80km/h, the improved tollgate entrance procedure increased 21.5% in average travel speed compared with Do-Nothing case and also increased 8.8% compared with current entrance control method.

Methodology for Evaluating Cycling Environment using GPS-based Probe Bicycle Speed Data (GPS프로브 자전거 주행속도를 이용한 자전거 주행환경 평가방법론)

  • Hong, Du-Ho;Kil, Eun-Ji;Kim, Su-Jin;Joo, Shin-Hye;Oh, Cheol
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.73-81
    • /
    • 2012
  • The bicycle is an environment-friendly transport mode leading to a more sustainable transportation system. To innovatively increase the use of bicycle as a significant transport mode, bicycling-friendly roadway environment should be provided. From this perspective, the scientific and effective assessment of roadway environment in term of the bicyclist perception for safety and comfortability is of keen interest. This study develops a methodology for evaluation cycling environment using probe bicycles. A global positioning system(GPS) based speedometer was used to collect bicycle speed data. Cycling comfortability index(CCI) was derived for the purpose of evaluating cycling environment. The proposed CCI can be effectively used as an assessment tool in the field of bicycle transportation.

A Development of Traffic Accident Model by Random Parameter : Focus on Capital Area and Busan 4-legs Signalized Intersections (확률모수를 이용한 교통사고예측모형 개발 -수도권 및 부산광역시 4지 교차로를 대상으로-)

  • Lee, Geun-Hee;Rho, Jeong-Hyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.6
    • /
    • pp.91-99
    • /
    • 2015
  • This study intends to build a traffic accident predictive model considering road geometrics, traffic and enviromental characteristics and identify the relationship of 4-legs intersection accidents in Seoul and Busan metropolitan area. The RPNB(Random Parameter Negative Binomial) model shows improvement over the fixed NB(Negative Binomial) and out of 53 variables, 10 variables (main road number of lane, main road vehicle traffic volume(left), minor road vehicle traffic volume(right), main road drive restriction, minor road sight distance, minor road median strip, minor road speed limit, minor road speed restriction) showed to have significant variables affecting traffic accident occurrences in 4-legs signilized intersections. Also, among 10 significant variables, 2 variables(minor road sight distance, minor road speed restriction) found to be random parameters.

A study on the imputation solution for missing speed data on UTIS by using adaptive k-NN algorithm (적응형 k-NN 기법을 이용한 UTIS 속도정보 결측값 보정처리에 관한 연구)

  • Kim, Eun-Jeong;Bae, Gwang-Soo;Ahn, Gye-Hyeong;Ki, Yong-Kul;Ahn, Yong-Ju
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.3
    • /
    • pp.66-77
    • /
    • 2014
  • UTIS(Urban Traffic Information System) directly collects link travel time in urban area by using probe vehicles. Therefore it can estimate more accurate link travel speed compared to other traffic detection systems. However, UTIS includes some missing data caused by the lack of probe vehicles and RSEs on road network, system failures, and other factors. In this study, we suggest a new model, based on k-NN algorithm, for imputing missing data to provide more accurate travel time information. New imputation model is an adaptive k-NN which can flexibly adjust the number of nearest neighbors(NN) depending on the distribution of candidate objects. The evaluation result indicates that the new model successfully imputed missing speed data and significantly reduced the imputation error as compared with other models(ARIMA and etc). We have a plan to use the new imputation model improving traffic information service by applying UTIS Central Traffic Information Center.

A Platform Conception of Road Information Telecommunication System for Call & Response Service (Call & Response 서비스를 위한 도로정보통신 플랫폼 구상)

  • Yim, Choon-Sik;Lee, Ki-Young;Song, Pil-Yong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.5
    • /
    • pp.1-12
    • /
    • 2008
  • In this paper, we described about core technologies required for the seamless service implementation and the communication system structure conceiving required for call & response services in order that the real-time traffic information service is consecutively provided to the vehicle moving at high speed. The SMART highway service is the information communication environment build-up concept which the real-time C&R service is comprised of the vehicle moving with 160km/h above. It was possible in case of being the low speed car in the DSRC system structure. However, there is a limit in the high speed environment as the DSRC system like a convention. In this paper, we proposed the structure of fitting for the SMART highway environment using the hand-over technique compositing the base station and several repeaters of DSRC system.

  • PDF

Development of Longitudinal Algorithm to Improve Speed Control and Inter-vehicle Distance Control Acceptability (속도 제어와 차간거리 제어 수용성 개선을 위한 종방향 알고리즘 개발)

  • Kim, Jae-lee;Park, Man-bok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.3
    • /
    • pp.73-82
    • /
    • 2022
  • Driver acceptance of autonomous driving is very important. The autonomous driving longitudinal controller, which is one of the factors affecting acceptability, consists of a high-level controller and a low-level controller. The host controller decides the cruise control and the space control according to the situation and creates the required target speed. The sub-controller performs control by creating an acceleration signal to follow the target speed. In this paper, we propose an algorithm to improve the inter-vehicle distance fluctuations that occur in the cruise control and space control switching problems in the host controller. The proposed method is to add an approach algorithm to the cruise control at the time of switching from cruise control to space control so that it is switched to space control at the correct switching distance. Through this, the error was improved from 12m error to 4m, and actual vehicle verification was performed.

Effect Analysis of Public Data-Based Automatic Traffic Enforcement Camera Installation Using the Comparison Group Method (비교그룹방법을 이용한 공공데이터 기반 교통단속장비 사고감소 효과분석)

  • Yunseob Lee;Yohee Han;Youngchan Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.168-181
    • /
    • 2023
  • This study analyzed the effects of traffic enforcement on accident reduction. The results revealed a significant reduction in both overall accidents (28.53%) and fatal accidents (39.44%). Notably, enforcement equipment targeting speed limits of 30 km/h and 50 km/h demonstrated similar accident reduction rates of 42.23% and 25.85%, respectively. However, variations were observed based on accident types and types of traffic violations. Therefore, it is evident that enforcement equipment yields distinct accident reduction effects depending on speed limits and types of traffic accidents. This finding underscores the potential for making informed policy decisions to enhance traffic safety measures.

Thickness Effect of ZnO Electron Transport Layers in Inverted Organic Solar Cells

  • Jang, Woong-Joo;Cho, Hyung-Koun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.377-377
    • /
    • 2011
  • Organic solar cells (OSCs) with low cost have been studied to apply on flexible substrate by solution process in low temperature [1]. In previous researches, conventional organic solar cell was composed of metal oxide anode, buffer layer such as PEDOT:PSS, photoactive layer, and metal cathode with low work function. In this structure, indium tin oxide (ITO) and Al was generally used as metal oxide anode and metal cathode, respectively. However, they showed poor reliability, because PEDOT:PSS was sensitive to moisture and air, and the low work function metal cathode was easily oxidized to air, resulting in decreased efficiency in half per day [2]. Inverted organic solar cells (IOSCs) using high work function metal and buffer layer replacing the PEDOT:PSS have focused as a solution in conventional organic solar cell. On the contrary to conventional OSCs, ZnO and TiO2 are required to be used as a buffer layer, since the ITO in IOSC is used as cathode to collect electrons and block holes. The ZnO is expected to be excellent electron transport layer (ETL), because the ZnO has the advantages of high electron mobility, stability in air, easy fabrication at room temperature, and UV absorption. In this study, the IOSCs based on poly [N-900-hepta-decanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)] (PCDTBT) : [6,6]-phenyl C71 butyric acid methyl ester (PC70BM) were fabricated with the ZnO electron-transport layer and MoO3 hole-transport layer. Thickness of the ZnO for electron-transport layer was controlled by rotation speed in spin-coating. The PCDTBT and PC70BM were mixed with a ratio of 1:2 as an active layer. As a result, the highest efficiency of 2.53% was achieved.

  • PDF

Feasibility Study on Introduction of Piggy-back System by Applying Transport Database

  • Lee, Yong-Jae;Lee, Chulung;Kim, Yong-Hoon;Han, Seong-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.1
    • /
    • pp.157-166
    • /
    • 2022
  • In this study, The goal is to analyze the feasibility of introducing a Piggyback system that can reduce the time and cost incurred by transshipment work and improve the transportation speed when transporting complex cargo by rail. To this end, the feasibility analysis methodology is reviewed through domestic and international literature review. In order to quantitatively derive the feasibility analysis values, a transportation database was applied to develop a freight transport simulation model and a freight demand prediction model for major freight transport O-D routes with a transportation distance of 200 km or more. As a result of analyzing economic feasibility by setting the analysis period to 15 years on the premise that the Piggyback System will be introduced on major cargo transport O-D routes in 2025, the NPV value was positive and the B/C value was 1.18, indicating that the Piggyback system was economical. The proposed research method can be meaningful data for establishing transportation policies that can improve the competitiveness of railroad transportation.