• Title/Summary/Keyword: Transport protein

Search Result 482, Processing Time 0.023 seconds

Purification and Characterization of Moran 20K from Morus alba

  • Kim, Eun-Sun;Park, Sung-Jean;Lee, Eun-Ju;Kim, Bak-Kwang;Huh, Hoon;Lee, Bong-Jin
    • Archives of Pharmacal Research
    • /
    • v.22 no.1
    • /
    • pp.9-12
    • /
    • 1999
  • A new glycoprotein was purified from the aqueous methanolic extract of the root bark of Morus alba which has been used as a component of antidiabetic remedy in Oriental Medicine. SDS-PAGE result shows that the molecular weight of the glycoprotein was approximately 20 kDa. This new glycoprotein was named as Moran 20K. The protein lowered blood glucose level in streptozotocin-induced hyperglycemic mice model and it also increased the glucose transport in cultured epididymis fat cells. The amino acid composition of the protein was analyzed, and the protein contained above 20% serine and cysteine such as insulin. The actual molecular weight of the protein was determined as 21.858 Da by MALDI-TOF mass spectroscopy.

  • PDF

Characterization of the Gene for the Hemin-Binding Protein from Porphyromonas Gingivalis (Porphyromonas gingivalis에서의 Hemin 결합 단백질 유전자의 특성 연구)

  • Kim, Sung-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.3
    • /
    • pp.663-676
    • /
    • 1999
  • Porphyromonas gingivalis, a Gram negative, anaerobic, asaccharolytic rod, is one of the most frequently implicated pathogens in human periodontal disease and has a requirement for hemin for growth. A 30 kDa (heated 24 kDa) hemin-binding protein whose expression is both hemin and iron regulated has recently been purified and characterized in this oral pathogen. This study has identified a hemin-binding P. gingivalis protein by expression of a P. gingivalis genomic library in Escherichia coli, a bacterium which does not require or transport exogenous hemin. A library of genomic DNA fragments from P. gingivalis was constructed in plasmid pUC18, transformed into Escherichia coli strain $DH5{\alpha}$ , and screened for recombinant clones with hemin-binding activity by plating onto hemin-containing agar. Of approximately 10,000 recombinant E. coli colonies screened on LB-amp-hemin agar, 10 exhibited a clearly pigmented phenotype. Each clone contained various insert DNA. The Hind III fragment transferred to the T7 RNA polymerase/promoter expression vector system produced a sligltly smaller (21 kDa) protein, a precursor form, immunoreactive to the antibody against the 24 kDa protein, suggesting that the cloned DNA fragment probably carried an entire gene for the 24 kDa hemin-binding protein.

  • PDF

The effect of some detergents on the changes of bacterial membrane (계면 활성제 처리에 의한 세균 세포막의 변화에 관한 연구)

  • 이종삼;이호용;조기승;조선희;장성열;최영길
    • Korean Journal of Microbiology
    • /
    • v.21 no.3
    • /
    • pp.115-126
    • /
    • 1983
  • The results that the effect of 6 detergents on the structural changes and biochemical composition of bacterial membrane of Escherichia coli and Bacillus cereus are as follows ; 1. Population growth of the bacteria was increased in case of the treatment with palmitoyl carnitine and sodium deoxy cholate but was increased in case of the treatment with palmitoyl carnitine and sodium deoxy cholate but was decreased by sodium dodecyl sulfate and palmitoyl choline, in E.coli and was decreased by palmitoyl carnitine and palmitoyl choline at the low concentration, in B. cereus. 2. The electron micrograph showed that cell wall lysis or cell collapse were observed in the treatment of sodium dodecyl sulfate and palmitoyl choline, and also cell wall was condensed by triton X-100 and sodium deoxy cholate, in E.coli. And in B. cereus, endospore formation of the bacteria was stimulated by palmitoyl choline, and cell lysis or structural changes of the membrane were observed in the treatment of sodium dodecyl sulfate, sodium cholate, and triton X-100, respectively. 3. As to the effect of detergent on the biochemical composition of biomembrane, the content of carnitine, in E.coli, and B.cereus, the content of structural protein and phospholipid were decreased by treatment of sodium dodecyl sulfate and structural protein was denatured by palmitoyl choline. 4. The profile of membrane protein revealed that the bacterial membrane were composed of various proteins. By dint of this result, some of membrane proteins were solubilized or changed to small molecules by the treatment of sodium dodecyl sulfate and palmitoyl choline, in E.coli and membrane protein of the biomembrane by treatment of sodium dodecyl sulfate, sodium deoxy cholate, palmitoyl choline, and palmitoyl carnitine were confirmed to be different profile as compared with those of the control, in B. cereus. Therefore, it is suggested that sodium dfodecyl sulfate and palmitoyl choline soulbilized biomembranes or inhibited membrane transport and that palmitoyl carnitine and sodium deoxy cholate were used as an energy source or stimulating the membrane transport, in E.coli. And, it is suggested that all of detergents were inhibited biomembrane synthesis, expet saponin, in B.cereus.

  • PDF

Identification and Functional Analysis of SEDL-binding and Homologue Proteins by Immobilized GST Fusion and Motif Based Methods

  • Hong, Ji-Man;Jeong, Mi-Suk;Kim, Jae-Ho;Kim, Boog-il;Holbrook, Stephen R.;Jang, Se-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.381-388
    • /
    • 2008
  • An X-linked skeletal disorder, SEDT (spondyloepiphyseal dysplasia tarda) is a genetic disease characterized by a disproportionately short trunk and short stature caused by mutations in the SEDL gene. This gene is evolutionarily conserved from yeast to human. The yeast SEDL protein ortholog, Trs20p, has been isolated as a member of a large multi-protein complex called the transport protein particle (TRAPP), which is involved in endoplasmic reticulum (ER)-to-Golgi transport. The interaction between SEDL and partner proteins is important in order to understand the molecular mechanism of SEDL functions. We isolated several SEDL-binding proteins derived from rat cells by an immobilized GST-fusion method. Furthermore, the SEDL-homologue proteins were identified using motif based methods. Common motifs between SEDL-binding proteins and SEDL-homologue proteins were classified into seven types and 78 common motifs were revealed. Sequence similarities were contracted to seven types using phylogenetic trees. In general, types I-III and VI were classified as having the function of acetyl-CoA carboxylase, glycogen phosphorylase, isocitrate dehydrogenase, and enolase, respectively, and type IV was found to be functionally related to the GST protein. Types V and VII were found to contribute to TRAPP vesicle trafficking.

PHOSPHATE-DEFICIENCY REDUCES THE ELECTRON TRANSPORT CAPACITIES OF THYLAKOID MEMBRANES THROUGH LIMITING PHOTOSYSTEM II IN LEAVES OF CHINESE CABBAGE

  • Park, Youn-Il;Hong, Young-Nam
    • Journal of Photoscience
    • /
    • v.1 no.2
    • /
    • pp.95-105
    • /
    • 1994
  • Experiments were carried out to investigate whether P, deficiency in detached 25 mM mannose-feeding led to a decline of the photosynthetic electron transport rates through acidification of the thylakoid lumen. With increasing mannose-feeding time, the maximal CO2 exchange rates and the maximal quantum yields of photosynthesis decreased rapidly up to 6 h by 73% then with little decrease up to 12 h. The ATP/ADP ratio declined by 54% 6 h after the treatment and then recovered to the control level at 12 h. However, the NADPH/NADP~ ratio was not significantly altered by mannose treatment. Electron transport rates of thylakoid membranes isolated from 6 h treated leaves did not change, but they decreased by 30% in 12 h treated leaves. The quenching analysis of Chl fluorescence in mannose-treated leaves revealed that both the fraction of reduced plastoquinone and the degree of acidification of thylakoid lumen remained higher than those of the control. The reduction of PSI in mannose fed leaves was inhibited due to acidification of thylakoid lumen (high qE). The reduction of primary quinone acceptor of PSII was inhibited by mannose feeding. Mannose treatment decreased the efficiency of excitation energy capture by PSII. Fo quenching was induced when treated with mannose more than 6 h, and had a reverse linear correlation with (Fv)m/Fm ratio. These results suggest that Pi deficiency in Chinese cabbage leaves reduce photosynthetic electron transport rates by diminishing both PSII function and electron transfer from PSII to PSI through acidification ofthylakoid lumen, which in turn induce the modification of photosynthetic apparatus probably through protein (de)phosphorylation.

  • PDF

Effects of Adipokine Retnla on the Regulation of High-Density Lipoprotein Metabolism

  • Lee, Mi-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.12
    • /
    • pp.139-145
    • /
    • 2016
  • In this paper, we propose to evaluate the effect of Resistin-like molecule alpha (Retnla) on the expression of transporters involved in modulating concentrations of peripheral cholesterol and plasma high-density lipoprotein (HDL) cholesterol. High levels of blood cholesterol are a well-recognized risk factor for atherosclerosis and are eliminated via the process of reverse cholesterol transport (RCT). We recently showed that Retnla ameliorates hypercholesterolemia and atherosclerosis by increasing biliary cholesterol secretion, the final step of the process, in low-density lipoprotein receptor-deficient mice. However, the role of Retnla in HDL-mediated cholesterol efflux, initial step of RCT pathway, is not yet clear. To identify cholesterol transport genes regulated by Retnla, we performed an extensive microarray-based gene expression screen using livers from Retnla-overexpressing (Tg) mice and control animals. The most significant change in Retnla-Tg mice was an upregulation of ATP-binding cassette sub-family G member 4 (Abcg4) transport and was validated using quantitative RT-PCR. The validated gene was also induced by treatment of purified Retnla protein in RAW 264.7 cells incubated with acetylated low-density lipoprotein and Hepa1c1c7 cells. Taken together, these results indicates that Retnla might also accelerate initial step of RCT pathway, suggesting therapeutic value of Retnla in the treatment of hypercholesterolemia and atherosclerosis.

Changes in Phosphatase Activity of the Mouse Uterus during the Estrous Cycle (發情週期에 EK른 생쥐子宮의 Phosphatase 活性의 變化에 관하여)

  • Kim, Moon-Kyoo;Kim, Sung-Rye;Cho, Wan-Kyoo
    • The Korean Journal of Zoology
    • /
    • v.23 no.2
    • /
    • pp.61-68
    • /
    • 1980
  • Quantitative analysis of the activities of transport ATPases as well as alkaline phosphatase of the mouse uterus was carried out during the estrous cycle. Even though the proportional patterns of the enzyme activities were similar each another between the stages of estrous cycle, the absolute activities of the enzymes except $K^+$-dependent and $Na^+$, $K^+$-activated ATPases at the time of estrus were significantly (p<0.025) higher than that at any other time of the estrous cycle. That is, the activities of $K^+$-dependent and $Na^+$, $K^+$-activated ATPases were negligible during the period of time from diestrus to estrus while the little activities (0.04 $\\sim$ 0.05$\\mu$M/mg protein/hr in average, $6\\sim7$% of the total enzyme activity) of these enzymes appeared at the time of metaestrus. On the other hand, at the time of estrus, the activities of $Mg^++$-dependent phosphatase, transport ATPase and alkaline phosphatase were rapidly and tremendously increased to be 0.69 (35%), 0.42 (21%) and 1.58 (79%), respectively. The activity of alkaline phosphatase was in the range of 0.60 $\\sim$ 1.58 (79 $\\sim$ 90%) and predominant throughout the estrous cycle. The activity of $Mg^++$-dependent alkaline phosphatase was estimated as 12 $\\sim$ 16% of the total enzyme activity. Therefore, it is assumed likely that $K^+$-dependent and $Na^+$, $K^+$-activated ATPases are not the main factors to control the fluid accumulation at the time of estrus, but may be the factors to reabsorb the luminal fluid into the uterine epithelium at the time of metaestrus, and that $Mg^++$-dependent phosphatase, transport ATPase and alkaline phosphatase must be closely involved in the secretion of luminal fluid from the epithelial cells of the mouse uterus.

  • PDF

The Influence of Vacuum Packaging of Hot-Boned Lamb at Early Postmortem Time on Meat Quality during Postmortem Chilled Storage

  • Zhao, Yingxin;Chen, Li;Bruce, Heather L.;Wang, Zhenyu;Roy, Bimol C.;Li, Xin;Zhang, Dequan;Yang, Wei;Hou, Chengli
    • Food Science of Animal Resources
    • /
    • v.42 no.5
    • /
    • pp.816-832
    • /
    • 2022
  • To evaluate the effects of early postmortem vacuum packaging (VP) on meat quality during postmortem chilled storage, hot-boned lamb was vacuum-packaged at 1, 6, 12, 24, and 48 h postmortem and stored around 2℃ until 168 h postmortem, with lamb packaged in plastic wrap as the control (aerobic packaging). Intramuscular pH decline was delayed when lamb was vacuum packaged at 1, 6, and 12 h postmortem (p<0.05). The lamb vacuum-packaged at 1 h postmortem (VP-1h group) had significantly lower shear force values and purge losses accompanied by lower free thiol group values than other treatments during postmortem storage and was also higher in extractable calpain-1 activity by 6 h postmortem (p<0.05). Free thiol group concentrations were significantly higher after VP at 6 and 12 h postmortem (p<0.05). Packaging lamb under vacuum very early postmortem produced the lowest shear force and purge loss, likely by slowing heat loss and muscle temperature decline, implying that lamb quality is improved by VP when applied very early postmortem. This was at the expense of protein oxidation, which was unrelated to other meat quality measurements, most likely because potential contracture during hot boning confounded its impact. Further research is required to understand the implications of the interaction between protein oxidation, VP, and hot boning on the acceptability of lamb.

Alpha-Tocopherol Transfer Protein (${\alpha}$-TTP): Insights from Alpha-Tocopherol Transfer Protein Knockout Mice

  • Lim, Yun-Sook;Traber, Maret G.
    • Nutrition Research and Practice
    • /
    • v.1 no.4
    • /
    • pp.247-253
    • /
    • 2007
  • Alpha-tocopherol transfer protein (${\alpha}$-TTP) is a liver cytosolic transport protein that faciliates ${\alpha}$-tocopherol (${\alpha}$-T) transfer into liver secreted plasma lipoproteins. Genetic defects in ${\alpha}$-TTP, like dietary vitamin E deficiency, are associated with infertility, muscular weakness and neurological disorders. Both human and ${\alpha}$-TTP deficient (${\alpha}-TTP^{-/-}$) mice exhibit severe plasma and tissue vitamin E deficiency that can be attenuated by sufficient dietary ${\alpha}$-T supplementations. In this review, we summarize the literature concerning studies utilizing the ${\alpha}-TTP^{-/-}$ mice. Levels of vitamin E in the ${\alpha}-TTP^{-/-}$ mice do not appear to be directly related to the amounts of dietary ${\alpha}$-T or to the levels of ${\alpha}$-TTP protein in tissues. The ${\alpha}-TTP^{-/-}$ mice appear to present a good model for investigating the specific role of ${\alpha}$-T in tissue vitamin E metabolism. Furthermore, ${\alpha}-TTP^{-/-}$ mice appear to be useful to elucidate functions of ${\alpha}$-TTP beyond its well recognized functions of transferring ${\alpha}$-T from liver to plasma lipoprotein fractions.

Inhibition of Adipocyte Differentiation and Adipogenesis by Supercritical Fluid Extracts and Marc from Cinnamomum verum (초임계 추출 계피오일의 3T3-L1 지방전구세포의 분화 전사인자 억제에 의한 지방대사 조절)

  • Park, Sung-Jin;Lee, In-Seon;Lee, Sam-Pin;Yu, Mi-Hee
    • Journal of Life Science
    • /
    • v.23 no.4
    • /
    • pp.510-517
    • /
    • 2013
  • This study was performed to evaluate the antiobesity effect of supercritical fluid extracts (SFC) and marc methanol extracts (SFM) from Cinnamomum verum in 3T3-L1 preadipocytes. In inducing the differentiation of 3T3-L1 preadipocytes in the presence of an adipogenic cocktail, iso-butylmethylanthine (IBMX), dexamathasone, and insulin, treatment with fraction residue SFC and SFM. SFC significantly reduced the mRNA expression of the transcription factor peroxisome proliferator-activate-dreceptor-${\gamma}$ ($PPAR{\gamma}$), the sterol regulatory-element-binding protein-1c (SREBP1c), and the CCAAT enhancer-binding-protein ${\alpha}$ ($C/EBP{\alpha}$) in a concentration-dependent manner. Moreover, SFC markedly down-regulated acyl-CoA synthetase-1 (ASC1), fatty acid synthesis (FAS), fatty acid transport-1 (FATP1), fatty acid binding protein 4 (FABP4), and perilipin. These findings suggest that SFC may be a potential therapeutic adjunct for obesity by targeting the differentiation of preadipocytes, as well as their functions.