• Title/Summary/Keyword: Transport Phenomena

Search Result 406, Processing Time 0.029 seconds

The analysis of electron transport coefficients in $CF_4$ molecular gas by multi-term approximation of the Boltzmann equation (다항근사 볼츠만 방정식에 의한 $CF_4$ 분자가스의 전자수송계수 해석)

  • Jeon, Byung-Hoon;Park, Jae-June;Ha, Sung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.141-144
    • /
    • 2001
  • An accurate cross sections set are necessary for the quantitatively understanding and modeling of plasma phenomena. By using the electron swarm method. we determine an accurate electron cross sections set for objective atoms or molecule at low electron energy range. In previous paper, we calculated the electron transport coefficients in pure $CF_4$ molecular gas by using two-term approximation of the Boltzmann equation. And by using this simulation method. we confirmed erroneous calculated results of transport coefficients for $CF_{4}$ molecule treated in this paper having 'C2v symmetry' as $C_{3}H_{8}$ and $C_{3}F_{8}$ which have large vibrational excitation cross sections which may exceed elastic momentum transfer cross section. Therefore, in this paper, we calculated the electron transport coefficients(W and $ND_L$) in pure $CF_4$ gas by using multi-term approximation of the Boltzmann equation by Robson and Ness which was developed at lames-Cook university, and discussed an application and/or validity of the calculation method by comparing the calculated results by two-term and multi-term approximation code.

  • PDF

The analysis of electron transport coefficients in CF$_4$ molecular gas by multi-term approximation of the Boltzmann equation (다항근사 볼츠만 방정식에 의한 CF$_4$분자가스의 전자수송계수 해석)

  • 전병훈;박재준;하성철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.141-144
    • /
    • 2001
  • An accurate cross sections set are necessary for the quantitatively understanding and modeling of plasma phenomena. By using the electron swarm method, we determine an accurate electron cross sections set for objective atoms or molecule at low electron energy range. In previous paper, we calculated the electron transport coefficients in pure CF$_4$ molecular gas by using two-term approximation of the Boltzmann equation. And by using this simulation method, we confirmed erroneous calculated results of transport coefficients for CF$_4$ molecule treated in this paper having 'C2v symmetry'as C$_3$H$_{8}$ and C$_3$F$_{8}$ which have large vibrational excitation cross sections which may exceed elastic momentum transfer cross section. Therefore, in this paper, we calculated the electron transport coefficients(W and ND$_{L}$) in pure CF$_4$ gas by using multi-term approximation of the Boltzmann equation by Robson and Ness which was developed at James-Cook university, and discussed an application and/or validity of the calculation method by comparing the calculated results by two-term and multi-term approximation code.e.

  • PDF

Experimental Study on Structural and Functional Characteristics of Surface-Modified Porous Membrane (다공성 멤브레인의 표면 개질에 따른 구조 및 성능 특성에 대한 실험 연구)

  • Lee, Sang Hyuk;Kim, Kiwoong
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.50-56
    • /
    • 2021
  • With the advances in recent nanotechnology, mass transport phenomena have been receiving large attention both in academic researches and industrial applications. Nonetheless, it is not clearly determined which parameters are dominant at nanoscale mass transport. Especially, membrane is a kind of technology that use a selective separation to secure fresh water. The development of great separation membrane and membrane-based separation system is an important way to solve existing water resource problems. In this study, glass fiber-based membranes which are treated by graphene oxide (GO), poly-styrene sulfonate (GOP) and sodium dodecyl sulfate (GPS) were fabricated. Mass transport parameters were investigated in terms of material-specific and structure-specific dominance. The 3D structural information of GO, GOP, and GPS was obtained by using synchrotron X-ray nano tomography. In addition, electrostatic characteristic and water absorption rate of the membranes were investigated. As a result, we calculated internal structural information using Tomadakis-Sotrichos model, and we found that manipulation of surface characteristics can improve spacer arm effect, which means enhancement of water permeability by control length of ligand and surface charge functionality of the membrane.

Effect of Chain Matching between Hydrocarbon and Fatty Acid on High Pressure Rheology

  • Ohno, N.;Mukai, R.;Rahman, Md.Z.;Shibata, K.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.83-84
    • /
    • 2002
  • For estimation of chain-matching phenomena between normal paraffin as a solvent and straight-chain fatty acid as an additive, the density measurement of n-dodecane, n-tetradecane and n-hexadecane were carried out at oil temperature 313K and pressure up to 1.3 GPa. Their solidification pressure were easily determined by the appearance of molecular crystal, abrupt volumetric contraction and generation of heat of solidification and showed minima under the matching condition. The bulk modulus K of molecular crystal was evaluated using phase diagram. The bulk modulus showed maxima under the each matching condition. The chain matching effect on the bulk modulus beyond the scope of the interfacial phenomena are confirmed.

  • PDF

Analysis of Turbulent Heat Transfer of Gas-Solid Suspension Flow In Pipes (固體分末 이 浮上된 二相亂流 管流動 의 熱傳達 解析)

  • 김재웅;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.4
    • /
    • pp.331-340
    • /
    • 1982
  • Numerical analysis is made on the turbulent heat transfer with suspension of solid particles in circular tube with constant heat flux. The mean motion of suspending particles in mixture is treated as the secondary gas flow with virtual density and viscosity. Our modeling of turbulent transport phenomena of suspension flow is based on this assumption and conventional mixing length theory. This paper gives the evidence that the mixing length models can be extended to close the governing equations for two phase turbulent flow with solid boundary at a first order level. Results on Nusselt numbers obtained by analytical treatments are compared with available experimental data and discussed. They suggest that the most important parameters of two phase turbulent heat transfer phenomena are relative particle diameter to pipe diameter, gas-solid loading ratio, and specific heat of suspending material.

Characteristics of Fine Particle Concentration and Case during Haze Days in Busan (부산 지역 연무 발생일의 미세먼지 농도와 사례별 특성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.26 no.6
    • /
    • pp.751-765
    • /
    • 2017
  • This research investigates the characteristics of meteorological variation and fine particles ($PM_{10}$ and $PM_{2.5}$) for case related to the haze occurrence (Asian dust, long range transport, stationary) in Busan. Haze occurrence day was 559 days for 20 years (from 1996 to 2015), haze occurrence frequency was 82 days (14.7%) in March, followed by 67 days (12.0%) in February and 56 days (10.0%) in May. Asian dust occurred most frequently in spring and least in winter, whereas haze occurrence frequency was 31.5% in spring, 29.7% in winter, 21.1% in fall, and 17.7% in summer. $PM_{10}$ concentration was highest in the occurrence of Asian dust, followed by haze and haze + mist, whereas $PM_{2.5}$ concentration was highest in the occurrence of haze. These results indicate that understanding the relation between meteorological phenomena and fine particle concentration can provide insight into establishing a strategy to control urban air quality.

Visualization of blood sucking phenomena of a female mosquito (암 모기 흡혈과정 가시화)

  • Kim, Bo-Heum;Lee, Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.114-115
    • /
    • 2007
  • As a carrier of malaria and sneak of blood, mosquitoes are regarded as an unpleasant insect. However, there are novel phenomena that happen inside a mosquito. Among them, we focused on the blood sucking function of a female mosquito. The main objective of this study was to investigate the mosquito's pumping mechanism in order to resolve the problem encountered when we inject or transport biologic fluids into a micro-chip. To analyze the pumping mechanism, we visualized the blood sucking process inside a female mosquito. Flow characteristics of blood flow in a proboscis were investigated experimentally using a micro-PIV velocity field measurement technique. The anatomical variation of head, thorax, abdomen which work as pumps and valves, was visualized using the syncrotron X-ray micro-imaging technique.

  • PDF

Experimental research on blood sucking phenomena of a female mosquito (암모기 흡혈과정에 대한 실험적 연구)

  • Kim, Bo-Heum;Lee, Jung-Yeop;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1475-1478
    • /
    • 2008
  • We have investigated the blood sucking phenomena of a female mosquito. The main objective of this study is to understand the mosquito's blood sucking mechanism and eventually to develop a bio-mimic technology that can be used to resolve the problem encountered in the transport of infinitesimal biological fluids in various bio-chips and microchips. At first, the consecutive velocity fields of blood-sucking flow in a proboscis were measured using a micro-particle image velocimetry (PIV) system employed with a high-speed camera. The velocity signals of the blood-sucking flow in the proboscis represent a periodic pulsatile flow pattern and spectral analysis on the velocity waveform shows a clear peak at 6.1 Hz.

  • PDF

Numerical analysis of high-strength concrete exposed elevated temperature (고온에 노출된 고강도 콘크리트 기둥의 수치해석)

  • Seo, Yeon-Joo;Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.21-24
    • /
    • 2005
  • A computational analysis of hygro-thermal and mechanical behaviour of concrete column at high temperature is presented. The objective of this study is to develop a finite difference model that simulates coupled heat and transport phenomena in reinforced concrete structures exposed to rapid heating conditions such as fires. The theoretical basis for the integrated finite difference method is presented to describe a powerful numerical technique for solving of fluid flow in porous media. The numerical results predict the phenomena of 'moisture clog' and the explosive spalling of concrete under fire. The investigations show that high-strength concrete(HSC) and normal-strength concrete(NSC) exposed to high temperature have different pore pressure buildup dependent on porosity, permeability and moisture contents. HSC has more possibility than NSC on spalling.

  • PDF

Relationship between Cavitation Incipient and NPSH Characteristic for Inverter Drive Centrifugal Pumps

  • Rakibuzzaman, Md;Suh, Sang-Ho;Kim, Hyoung-Ho;Jung, Young-Hoon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.76-80
    • /
    • 2015
  • The purpose of this study is to understand the cavitation phenomena in centrifugal pumps through computational fluid dynamics method. NPSH characteristic curve is measured from different flow operating conditions. Steady state, liquid-vapor homogeneous method with two equations transport turbulence model is employed to estimate the NPSH curve in centrifugal pumps. The Rayleigh-Plesset cavitation model is adapted as source term for inter-phase mass transfer in order to understand cavitation phenomena in centrifugal pumps. The cavitation incipient curve is clearly estimated at different flows operating conditions. A relationship is made between cavitation incipient and NPSH curve. Also the effects on water vapor volume fraction and pressure load distributions on the impeller blade are also described.