• Title/Summary/Keyword: Transport Calculation

Search Result 430, Processing Time 0.026 seconds

Determination of Inelastic Collision Cross Sections for $C_{3}F_{8}$ Molecule by Multi-term Boltzmann Equation Analysis

  • Jeon, Byung-Hoon;Ha, Sung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.934-941
    • /
    • 2000
  • We measured the electron transport coefficients, the electron drift velocity W and the longitudinal diffusion coefficient $D_{L}$ in the 0.526% and 5.05% $C_{3}F_{8}$-Ar mixtures over the E/N range from 0.01 Td to 100 Td by the double shutter drift tube, and compared the measured results by Hunter et al. with those. We determined the inelastic collision cross sections for the $C_{3}F_{8}$ molecule by the comparison of the present measurements and the calculation of electron transport coefficients in the $C_{3}F_{8}$-Ar mixtures by using a multi-term Boltzmann equation analysis.

  • PDF

Thermal and Fluid Flow of the Air Layer in a Flat Type Solar Collector (평판형 태양열 집열판 공기층의 열 및 유체유동)

  • Bae, K.Y.;Yi, C.S.;Lee, K.S.;Chung, H.S.;Jeong, H.M.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.3
    • /
    • pp.61-68
    • /
    • 2001
  • This study represents numerical analysis on the thermal and fluid flow of the air layer in a solar collector. The boundary conditions was assumed that the top and bottom wall of the air layer have a heating and cooling surface, respectively, and this calculation model have a solid body with a cooling temperature of $20^{\circ}C$. As the results of simulations, the magnitudes of the velocity vectors and isotherms are increased proportionally to the tilt angles. As the tilt angle is increased, the mean Nusselt numbers are increased and the maximum value of the mean Nusselt number was appeared at tilt angle $\theta=75^{\circ}$.

  • PDF

Calculation of Equivalent Feeder Geometries for CANDU Transient Simulations

  • Cho, Seungyon;Muzumdar, Ajit
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.429-436
    • /
    • 1995
  • This paper describes a methodology for determination of representative CANDU feeder geometry and the pressure drops between inlet/outlet header and fuel channel in the primary loop. A code, MEDOC, was developed based on this methodology and helps perform a calculation of equivalent feeder geometry for a selected channel group on the basis of feeder geometry data (fluid volume, mass flow rate, loss factor) and given property data pressure, quality, density) at inlet/outlet header. The equivalent feeder geometry calculated based on this methodology will be useful fur the transient thermohydraulic analysis of the primary heat transport system for the CANDU heavy water-cooled pressure tube reactor.

  • PDF

Modeling of Electrical Conductivity from $\sigma$tot vs. Po21/4 Plot in Wet Atmosphere for High-Temperature Proton-Conducting Oxides

  • Baek, Hyun-Deok
    • The Korean Journal of Ceramics
    • /
    • v.4 no.2
    • /
    • pp.136-140
    • /
    • 1998
  • This work demonstrates a method for modeling of electrical conductivity in high-temperature proton-conducting oxides. Total conductivity was calculated assuming that it comprises partial conductivities contributed by protons, oxygen ions and electron holes. From the polt $\sigma_{tot}$ vs. $po_2\;{1/4}$ in wet atmosphere, thermodynamic and kinetic parameters were obtained representing transport properties such as concentration and mobility of the charge-carrying defects. The formulas for the calculation of partial conduction were derived based on the defect structure of HTPCs. Illustrative calculation were made for $SrCe_{0.95}Yb_{0.05}O_{2.975}$ system.

  • PDF

Modeling of High Pressure Droplet Vaporization with Flash Phase Equilibrium Calculation (플래시 상평형 방법에 의한 고압 액적 기화 모델)

  • 이강원;윤웅섭
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.65-69
    • /
    • 2002
  • Unsteady vaporization of a droplet quiescent in a high pressure environment are studied with emphasis placed oil the modeling of equilibrium at vapor-liquid interface. Complete set of conservation equations for liquid and gas phases is numerically time integrated. Vapor-liquid interfacial thermodynamics are solved by f]ash equilibrium calculation method. The model was proper]y validated with experiment and the improvement in the solution accuracy was made. Vaporization of n-pentane fuel droplet in nitrogen background gas is examined. Effects of ambient gas solubility, property variation, transient diffusion, and multicomponent transport on the droplet vaporization are investigated systematically. High-pressure effects on the droplet vaporization is examined and discussed.

  • PDF

A Numerical Analysis of the Thermal Hydraulic Characteristics in a Channel of 37 Rods (전산해석을 통한 37개봉으로 구성된 유로에서의 열유체학적 특성분석)

  • 전태현;심윤섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.50-55
    • /
    • 1986
  • Characteristics of the flow and heat transfer in a channel of 37 rods are investigated numerically. The flow is taken to be a fully developed incompressible laminar flow and it has an uniform temperature profile at the inlet and flows down through the channel of constant wall temperature. A boundary-fitted coordinate system is used for the complex geometry. Calculation is initiated by calculating the developed flow profile and then proceeds to temperature development. Through the calculation the details of the flow and temperature distribution characteristics are found, and discussion is made on the mechanism of the transport phenomena in the complex geometry in terms of wall shear stress distribution, non-dimensionalized velocity, friction factor, Nusselt number distribution, Reynolds number, and porosity. Also the effects of the eccentricity in rod configuration are analyzed and its importance is emphasized.

Investigation of Nonlinear Numerical Mathematical Model of a Multiple Shaft Gas Turbine Unit

  • Kim, Soo-Yong;Valeri P. Kovalevsky
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2087-2098
    • /
    • 2003
  • The development of numerical mathematical model to calculate both the static and dynamic characteristics of a multi-shaft gas turbine consisting of a single combustion chamber, including advanced cycle components such as intercooler and regenerator is presented in this paper. The numerical mathematical model is based on the simplified assumptions that quasi-static characteristic of turbo-machine and injector is used, total pressure loss and heat transfer relation for static calculation neglecting fuel transport time delay can be employed. The supercharger power has a cubical relation to its rotating velocity. The accuracy of each calculation is confirmed by monitoring mass and energy balances with comparative calculations for different time steps of integration. The features of the studied gas turbine scheme are the starting device with compressed air volumes and injector's supercharging the air directly ahead of the combustion chamber.

FAST REACTOR PHYSICS AND COMPUTATIONAL METHODS

  • Yang, W.S.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.2
    • /
    • pp.177-198
    • /
    • 2012
  • This paper reviews the fast reactor physics and computational methods. The basic reactor physics specific to fast spectrum reactors are briefly reviewed, focused on fissile material breeding and actinide burning. Design implications and reactivity feedback characteristics are compared between breeder and burner reactors. Some discussions are given to the distinct nuclear characteristics of fast reactors that make the assumptions employed in traditional LWR analysis methods not applicable. Reactor physics analysis codes used for the modeling of fast reactor designs in the U.S. are reviewed. This review covers cross-section generation capabilities, whole-core deterministic (diffusion and transport) and Monte Carlo calculation tools, depletion and fuel cycle analysis codes, perturbation theory codes for reactivity coefficient calculation and cross section sensitivity analysis, and uncertainty analysis codes.

A Study on the Unsteady Flow Characteristics Analysis of Intake and Exhaust Pipe in 4 Cycle Spark-Ignition Engine (4사이클 전기점화기관에서 흡.배기관내 비정상 유동특성 해석에 관한 연구)

  • 정수진;김태훈;민규식;장형성
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.2
    • /
    • pp.3-11
    • /
    • 1994
  • This study discribes result of comparision of two other numerical method, method of characteristics (MOC) and Lax-Wendroff method(LWM) applied at wave action analysis of Intake and exhaust pipe. Partiality FCT(Flux Correct Transport) scheme is appeneded to LWM to protest unacceptable overshoots, occuring near discontinuity. The final conclusion of this study is that MOC should be replaced by a second order finite difference approach(such as the LW method). Clear benefits we can get by change are faster calculation, higher accuracy, conservation of mass and consistent calculation method.

  • PDF

Analysis of Calculation Model for Specific Air-water Interface Area in Unsaturated Porous Media (불포화 다공성 매질체의 공기-물 경계면 비표면적 계산모델 분석)

  • Kim, Min-Kyu;Kim, Song-Bae;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.5
    • /
    • pp.83-93
    • /
    • 2006
  • In unsaturated porous media, the air-water interface (AWI) plays an important role in removing of biocolloids such as bacteria, viruses, and protozoan (oo)cysts. In this study, four models related to calculation of specific AWI area are analyzed to determine the appropriate model, and the selected models are verified using the previously reported experimental data. The results indicate that the modified model from Niemet et al. (2002) is the most appropriate tool for calculating the specific AWI area using the van Genuchten (1980) parameters obtained from the water retention curve. Hence, it is expected that this model could be used to quantitatively determine the attachment of biocolloids to AWI in the transport modeling of biocolloids in unsaturated porous media.