• 제목/요약/키워드: Transparent solar cells

검색결과 245건 처리시간 0.024초

염료감응형 태양전지용 유리분말이 함유된 고효율 광전극 페이스트 개발 (Development of High Performance Photoelectrode Paste Doped Glass Powder for Dye-sensitized Solar Cells)

  • ;;구할본
    • 한국전기전자재료학회논문지
    • /
    • 제24권5호
    • /
    • pp.427-431
    • /
    • 2011
  • Hybrid $SiO_2-TiO_2$ photoelectrode with different type of layers was investigated in dye-sensitized solar cells (DSSC). Use of a thin layer of nanocrystalline $TiO_2$ would imply reduction in the amount of dye coverage, however, lower amount of dye in the thin films would imply fewer electron generation upon illumination. So, thus, it becomes necessary to include a $SiO_2-TiO_2$ layer for increase light harvesting effect such that the lower photon conversion due to thin layer could be compensated. In this paper reports the use of transparent high surface area $TiO_2$ layer and an additional $SiO_2-TiO_2$ layer, thus ensuring adequate light harvesting in these devices. The best solar conversion efficiency 6.6% under AM 1.5 was attained with a multi-layer structure using $TiO_2$ layer/$SiO_2-TiO_2$ layer/$TiO_2$ layer for the light harvesting and this had resulted to about 44% increase in photocurrent density of dye-sensitized solar cells.

ITO를 대체한 고효율 유기박막 태양전지 (Replacement of ITO for efficient organic polymer solar cells)

  • 김재령;박진욱;이보현;이표;이종철;문상진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.69.1-69.1
    • /
    • 2010
  • We have fabricated organic photovoltaic cells (OPVs) with highly conductive poly 3,4-ethylenedioxythiophene : poly styrenesulfonate (PEDOT:PSS) layer as an anode without using transparent conducting oxide (TCO), which has been modified by adding some organic solvents like sorbitol (So), dimethyl sulfoxide (DMSO), N-methyl-pyrrolidone (NMP), dimethylformamide (DMF), and ethylene glycol (EG). The conductivity of PEDOT:PSS film modified with each additive was enhanced by three orders of magnitude. According to atomic force microscopy (AFM) study, conductivity enhancement might be related to better connections between the conducting PEDOT chains. TCO-free solar cells with modified PEDOT:PSS layer and the active layer composed of poly(3-hexylthiophene) (P3HT) and phenyl [6,6] C61 butyric acid methyl ester (PCBM) exhibited a comparable device performance to indium tin oxide (ITO) based organic solar cells. The power conversion efficiency (PCE) of the organic solar cells incorporating DMSO, So + DMSO and EG modified PEDOT:PSS layer reached 3.51, 3.64 and 3.77%, respectively, under illumination of AM 1.5 (100mW/$cm^2$).

  • PDF

Highly Conductive Flexible Transparent Electrode Using Silver Nanowires & Conducting Polymer

  • Seo, Dong-Min;Kim, Sang-Ho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.547-547
    • /
    • 2012
  • As displays become larger and solar cells become cheaper, there is an increasing need for low-cost transparent electrodes. Intensive effort has been made to replace ITO (Indium Tin Oxide) based transparent electrode with cheap and flexible ones. Among those, silver nanowires have got limelight because of its great conductivity and flexibility. Even though the electric property of the Ag nanowire based transparent electrode surpassed ITO, the optical property needs to be improved (lower transmittance, higher haze). Here, we reported transparent electrode based on Ag nanowires and conducting polymer to improve optical properties. The Ag nanowires are coated onto PET films and the resulting transparent electrode film shows $200ohm/{\Box}$ resistance and > 90% optical transmittance.

  • PDF

기판온도 변화에 따른 ZnO:Al 투명 전도막의 특성 변화 (A study on the properties of transparent conductive ZnO:Al films on variaton substrate temperature)

  • 양진석;성하윤;금민종;손인환;신성권;김경환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.525-528
    • /
    • 2001
  • ZnO:Al thin film can be used as a transparent conducting oxide(TCO) which has low electric resistivity and high optical transmittance for the front electrode of amorphous silicon solar cells and display devices. This study of electrical, crystallographic and optical properties of Al doped ZnO thin films prepared by Facing Targets Sputtering(FTS), where strong internal magnets were contained in target holders to confine the plasma between the targets, is described. Optimal transmittance and resistivity was obtained by controlling flow rate of $O_2$ gas and substrate temperature. When the $O_2$ gas rate of 0.3 and substrate temperature $200^{\circ}C$, ZnO:Al thin film had strongly oriented c-axis and lower resistivity( < $10^{-4}{\Omega}-cm$ ).

  • PDF

Cu2ZnSn(S,Se)4 (CZTSSe) 박막 태양전지 적용을 위한 마그네트론 스퍼터링으로 증착된 AZO/Ag/AZO 투명전극의 특성 (Characteristics of an AZO/Ag/AZO Transparent Conducting Electrode Fabricated by Magnetron Sputtering for Application in Cu2ZnSn(S,Se)4 (CZTSSe) Solar Cells)

  • 이동민;장준성;김지훈;이인재;이병훈;조은애;김진혁
    • 한국재료학회지
    • /
    • 제30권6호
    • /
    • pp.285-291
    • /
    • 2020
  • Recent advances in technology using ultra-thin noble metal film in oxide/metal/oxide structures have attracted attention because this material is a promising alternative to meet the needs of transparent conduction electrodes (TCE). AZO/Ag/AZO multilayer films are prepared by magnetron sputtering for Cu2ZnSn(S,Se)4 (CZTSSe) of kesterite solar cells. It is shown that the electrical and optical properties of the AZO/Ag/AZO multilayer films can be improved by the very low resistivity and surface plasmon effects due to the deposition of different thicknesses of Ag layer between oxide layers fixed at AZO 30 nm. The AZO/Ag/AZO multilayer films of Ag 15 nm show high mobility of 26.4 ㎠/Vs and low resistivity and sheet resistance of 3.5810-5 Ωcm and 5.0 Ω/sq. Also, the AZO/Ag (15 nm)/AZO multilayer film shows relatively high transmittance of more than 65 % in the visible region. Through this, we fabricated CZTSSe thin film solar cells with 7.51 % efficiency by improving the short-circuit current density and fill factor to 27.7 mV/㎠ and 62 %, respectively.

금속 메쉬 전극을 이용한 TCO-less 광전변환소자 제작 및 광전변환 특성 (Synthesis of TCO-less Solar Cell using Metal Mesh Type Electrode and its Photovoltaic Characteristics)

  • 박민우;성열문
    • 조명전기설비학회논문지
    • /
    • 제25권2호
    • /
    • pp.126-130
    • /
    • 2011
  • Transparent conductive oxide (TCO) is an important part in the construction of dye-sensitized solar cells (DSCs) because of its low sheet resistance, sufficient light transparent ability and high photoelectrical response as a porous photo-electrode material of DSCs. However, the use of TCO for the two DSC electrodes can result in significant cost increase for the less effective DSCs compared to Si based solar cell. Therefore, the replacement of TCO is required for the commercial production of DSCs. In this study, TCO electrodes are replaced by stainless steel mesh. The 3.44[%] efficiency of the prepared TCO-less DSCs sample was obtained.

투과 및 반사율 측정을 이용한 염료감응태양전지의 유효 굴절률 모델링 (Effective Refractive Index of Dye-Sensitized Solar Cell Using Transmittance and Reflectance Measurements)

  • 김형석;이주철;신명훈
    • Current Photovoltaic Research
    • /
    • 제3권3호
    • /
    • pp.91-96
    • /
    • 2015
  • Optical modeling and characterization of transparent dye-sensitized solar cells (DSC) are presented to design and estimate DSC devices numerically. In order to model the inhomogeneous active layer of DSC, the porous structure of titanium oxide ($TiO_2$) and dye mixture, we prepared films consisting of layer by layer of the DSC's basic materials sequentially, and characterized the optical parameters of the films with the effective refractive index, which was extracted from the transmittance and reflectance measurements in ultra violet to near infra-red range. By using the effective refractive index, we made the optical model for DSC, and demonstrated that the optical model based on effective refractive index can be used to design and evaluate the performance of transparent-type DSC modules.

IR 레이저 스크라이빙에 의한 HJT 셀 분할 시 출력 감소율 최소화에 대한 연구 (Research on Minimizing Output Degradation in HJT Cell Separation Using IR Laser Scribing)

  • 이은비;윤성민;김민섭;신진호;김유진;김정훈;박민준;정채환
    • Current Photovoltaic Research
    • /
    • 제12권2호
    • /
    • pp.37-40
    • /
    • 2024
  • One of the current innovation trends in the solar industry is the increase in the size of silicon wafers. As the wafer size increases, the series resistance of the module rises, highlighting the need for research on methods for cutting and bonding solar cells. Among these, the Infrared (IR) laser scribing technique has been extensively researched. However, there is still insufficient optimization research regarding the thermal damage caused by lasers on the Transparent Conductive Oxide (TCO) layer of Heterojunction (HJT) solar cells. Therefore, in this study, we systematically varied conditions such as IR laser scribing speed, frequency, power, and the number of scribes to investigate their impact on the performance of cut cells under each condition. Additionally, we conducted a comparative analysis of thermal damage effects on the TCO layer based on varying scribing depths.

Pore Size Control of a Highly Transparent Interfacial Layer via a Polymer-assisted Approach for Dye-sensitized Solar Cells

  • Lee, Chang Soo;Lee, Jae Hun;Park, Min Su;Kim, Jong Hak
    • Korean Chemical Engineering Research
    • /
    • 제57권3호
    • /
    • pp.392-399
    • /
    • 2019
  • A highly transparent interfacial layer (HTIL) to enhance the performance of dye-sensitized solar cells (DSSCs) was prepared via a polymer-assisted (PA) approach. Poly(vinyl chloride)-graft-poly(oxyethylene methacrylate) (PVC-g-POEM) was synthesized via atom-transfer radical polymerization (ATRP) and was used as a sacrificial template. The PVC-g-POEM graft copolymer induced partial coordination of a hydrophilic titanium isopropoxide (TTIP) sol-gel solution with the POEM domain, resulting in microphase separation, and in turn, the generation of mesopores upon calcination. These phenomena were confirmed using Fourier-transform infrared (FT-IR) spectroscopy, UV-visible light transmittance spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis. The DSSCs incorporating HTIL60/20 (consisting of a top layer with a pore size of 60 nm and a bottom layer with a pore size of 20 nm) exhibited the best overall conversion efficiency (6.36%) among the tested samples, which was 25.9% higher than that of a conventional blocking layer (BL). DSSC was further characterized using the Nyquist plot and incident-photon to electron conversion efficiency (IPCE) spectra.

High-Efficiency Heterojunction with Intrinsic Thin-Layer Solar Cells: A Review

  • Dao, Vinh Ai;Kim, Sangho;Lee, Youngseok;Kim, Sunbo;Park, Jinjoo;Ahn, Shihyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • 제1권2호
    • /
    • pp.73-81
    • /
    • 2013
  • Heterojunction with Intrinsic Thin-layer (HIT) solar cells are currently an important subject in industrial trends for thinner solar cell wafers due to the low-temperature of production processes, which is around $200^{\circ}C$, and due to their high-efficiency of 24.7%, as reported by the Panasonic (Sanyo) group. The use of thinner wafers and the enhancement of cell performance with fabrication at low temperature have been special interests of the researchers. The fundamental understanding of the band bending structures, choice of materials, fabrication process, and nano-scale characterization methods to provide necessary understanding of the interface passivation mechanisms, emitter properties, and requirements for transparent oxide conductive layers is presented in this review. This information should be used for the performance characterization of the developing technologies for HIT solar cells.