DOI QR코드

DOI QR Code

Characteristics of an AZO/Ag/AZO Transparent Conducting Electrode Fabricated by Magnetron Sputtering for Application in Cu2ZnSn(S,Se)4 (CZTSSe) Solar Cells

Cu2ZnSn(S,Se)4 (CZTSSe) 박막 태양전지 적용을 위한 마그네트론 스퍼터링으로 증착된 AZO/Ag/AZO 투명전극의 특성

  • Lee, Dong Min (Department of Materials Science and Engineering, Chonnam National University) ;
  • Jang, Jun Sung (Department of Materials Science and Engineering, Chonnam National University) ;
  • Kim, Jihun (School of Integrated Technology, Gwangju Institute of Science and Technology) ;
  • Lee, InJae (Department of Materials Science and Engineering, Chonnam National University) ;
  • Lee, Byeong Hoon (Department of Materials Science and Engineering, Chonnam National University) ;
  • Jo, Eunae (Department of Materials Science and Engineering, Chonnam National University) ;
  • Kim, Jin Hyeok (Department of Materials Science and Engineering, Chonnam National University)
  • 이동민 (전남대학교 신소재공학과) ;
  • 장준성 (전남대학교 신소재공학과) ;
  • 김지훈 (광주과학기술원 전기전자컴퓨터공학부) ;
  • 이인재 (전남대학교 신소재공학과) ;
  • 이병훈 (전남대학교 신소재공학과) ;
  • 조은애 (전남대학교 신소재공학과) ;
  • 김진혁 (전남대학교 신소재공학과)
  • Received : 2020.03.23
  • Accepted : 2020.05.11
  • Published : 2020.06.27

Abstract

Recent advances in technology using ultra-thin noble metal film in oxide/metal/oxide structures have attracted attention because this material is a promising alternative to meet the needs of transparent conduction electrodes (TCE). AZO/Ag/AZO multilayer films are prepared by magnetron sputtering for Cu2ZnSn(S,Se)4 (CZTSSe) of kesterite solar cells. It is shown that the electrical and optical properties of the AZO/Ag/AZO multilayer films can be improved by the very low resistivity and surface plasmon effects due to the deposition of different thicknesses of Ag layer between oxide layers fixed at AZO 30 nm. The AZO/Ag/AZO multilayer films of Ag 15 nm show high mobility of 26.4 ㎠/Vs and low resistivity and sheet resistance of 3.5810-5 Ωcm and 5.0 Ω/sq. Also, the AZO/Ag (15 nm)/AZO multilayer film shows relatively high transmittance of more than 65 % in the visible region. Through this, we fabricated CZTSSe thin film solar cells with 7.51 % efficiency by improving the short-circuit current density and fill factor to 27.7 mV/㎠ and 62 %, respectively.

Keywords

References

  1. M. Eritt, C. May, K. Leo, M. Toerker and C. Radehaus, Thin Solid Films, 518, 3042 (2010). https://doi.org/10.1016/j.tsf.2009.09.188
  2. A. Mirzaei and G. Neri, Sens. Actuators, B, 237, 749 (2016). https://doi.org/10.1016/j.snb.2016.06.114
  3. J. S. Jang, J. Kim, U. Ghorpade, H. H. Shin, M. G. Gang, S. D. Park, H.-J. Kim, D. S. Lee and J. H. Kim, J. Alloys Compd., 793, 499 (2019). https://doi.org/10.1016/j.jallcom.2019.04.042
  4. K. C. Heo, Y. Sohn and J. S. Gwag, Ceram. Int., 41, 617 (2015). https://doi.org/10.1016/j.ceramint.2014.08.111
  5. J. Yun, Adv. Funct. Mater., 27, 1606641 (2017). https://doi.org/10.1002/adfm.201606641
  6. A. Khalid, J. Display Technol., 7, 593 (2011). https://doi.org/10.1109/JDT.2011.2151830
  7. Minami. T, Semicond. Sci. Technol., 20, S35-S44 (2005). https://doi.org/10.1088/0268-1242/20/4/004
  8. X. Huang, Z. Zeng, Z. Fan, J. Liu and H. Zhang, Adv. Mater., 24, 5979 (2012). https://doi.org/10.1002/adma.201201587
  9. S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland and J. N. Coleman, ACS Nano, 3, 1767 (2009). https://doi.org/10.1021/nn900348c
  10. M. G. Kang, M. S. Kim, J. Kim and L. J. Guo, Adv. Mater., 20, 4408 (2008). https://doi.org/10.1002/adma.200800750
  11. N. E. Christensen, Phys. Status Solidi B, 54, 551 (1972). https://doi.org/10.1002/pssb.2220540219
  12. G. Zhao, W. Wang, T.-S. Bae, S.-G. Lee, C. Mun, S. Lee, H. Yu, G.-H. Lee, M. Song and J. Yun, Nat. Commun., 6, 8830 (2015). https://doi.org/10.1038/ncomms9830
  13. G. Zhang, D. Zhao, D. Gu, H. Kim, T. Ling, Y.-K. R. Wu and L. J. Guo, Adv. Mater., 26, 5696 (2014). https://doi.org/10.1002/adma.201306091
  14. D. C. Lim, J. H. Jeong, K. Hong, S. Nho, J.-Y. Lee, Q. V. Hoang, S. K. Lee, K. Pyo, D. Lee and S. Cho, Prog. Photovolt., 26, 188 (2018). https://doi.org/10.1002/pip.2965
  15. J. Meiss, M. K. Riede and K. Leo, J. Appl. Phys., 105, 063108 (2009). https://doi.org/10.1063/1.3100039
  16. V. J. Logeeswaran, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang and R. S. Williams, Nano Lett., 9, 178 (2009). https://doi.org/10.1021/nl8027476
  17. N. Formica, D. S. Ghosh, A. Carrilero, T. L. Chen, R. E. Simpson and V. Pruneri, ACS Appl. Mater. Interfaces, 5, 3048 (2013). https://doi.org/10.1021/am303147w
  18. H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng and S. A. Maier, ACS Nano, 4, 3139 (2010). https://doi.org/10.1021/nn100466p
  19. G. Abadias, L. Simonot, J. J. Colin, A. Michel, S. Camelio and D. Babonneau, Appl. Phys. Lett., 107, 183105 (2015). https://doi.org/10.1063/1.4935034
  20. E. Jeong, S. Bae, J. B. Park, S. M. Yu, D. Kim, H.-S. Lee, J. Rha, Y.-R. Cho and J. Yun, RSC Adv., 9, 9160 (2019). https://doi.org/10.1039/c9ra00042a
  21. G. Zhao, M. Song, H.-S. Chung, S. M. Kim, S.-G. Lee, J.-S. Bae, T.-S. Bae, D. Kim, G.-H. Lee, S. Z. Han, H.-S. Lee, E.-A. Choi and J. Yun, ACS Appl. Mater. Interfaces, 9, 38695 (2017). https://doi.org/10.1021/acsami.7b10234
  22. S. Kang, R. Nandi, J. Sim, J. Jo, U. Chatterjee and C. Lee, RSC Adv., 7, 48113 (2017). https://doi.org/10.1039/C7RA07406A