• 제목/요약/키워드: Transparent Conducting

검색결과 505건 처리시간 0.029초

Preparation of gold nanoparticle/single-walled carbon nanotube nanohybrids using biologically programmed peptide for application of flexible transparent conducting films

  • Yang, MinHo;Choi, Bong Gill
    • Carbon letters
    • /
    • 제20권
    • /
    • pp.26-31
    • /
    • 2016
  • In this study, we report a general method for preparation of a one-dimensional (1D) arrangement of Au nanoparticles on single-walled carbon nanotubes (SWNTs) using biologically programmed peptides as structure-guiding 1D templates. The peptides were designed by the combination of glutamic acid (E), glycine (G), and phenylalanine (F) amino acids; peptides efficiently debundled and exfoliated the SWNTs for stability of the dispersion and guided the growth of the array of Au nanoparticles in a controllable manner. Moreover, we demonstrated the superior ability of 1D nanohybrids as flexible, transparent, and conducting materials. The highly stable dispersion of 1D nanohybrids in aqueous solution enabled the fabrication of flexible, transparent, and conductive nanohybrid films using vacuum filtration, resulting in good optical and electrical properties.

Transparent Conducting Nanodomes for Efficient Light Management

  • Hong, Seung-Hyouk;Yun, Ju-Hyung;Park, Hyeong-Ho;Kim, Joondong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.314.1-314.1
    • /
    • 2013
  • Transparent conducting nanoscale-domes were periodically patterned on a Si substrate by nanoimprint method. Transparent conductor of indium-tin-oxide (ITO) was shaped as a nanodome, which effectively drives the incident light effectively into a light-absorber and therefore induces a substantially enhanced photo-response. An ITO nanodome is electrically isolated from the neighboring nanodomes. This structure benefits to provide a low contact between a Si substrate and a front metal electrode giving an efficient electrical path. The ITO nanodome device showed a significantly enhanced photo-response of 6010 from the value of 72.9 of a planar ITO film. The electrical and optical advantage of an ITO nanodome is suitable for various photoelectric applications.

  • PDF

차세대 투명전극 소재의 종류와 특성 (Materials and Characteristics of Emerging Transparent Electrodes)

  • 정문현;김세열;유도혁;김중현
    • 공업화학
    • /
    • 제25권3호
    • /
    • pp.242-248
    • /
    • 2014
  • 정보 통신 분야의 발전에 따라 기존의 전자 기기들은 평면성을 벗어나 투명 유연하고 깨지지 않는 특성이 요구되고 있다. 이러한 부가적인 특성을 갖춘 기기들의 제조를 위해서는 전극의 투명성과 유연성을 동시에 갖고 있어야 하지만, 현재 가장 대표적으로 이용되는 투명전극인 ITO (Indium Tin Oxide)는 유연하지 못하다는 단점과 자원적인 한계를 갖고 있다. 이에 따라 ITO의 한계를 극복하기 위해 다양한 물질들을 이용한 대체 재료 개발이 활발히 연구되고 있으며 대체 물질들의 복합화를 통해 더 향상된 물성을 발현시키기 위한 연구가 진행되고 있다. 본 총설에서는 ITO의 한계를 극복하고 투명전극으로서의 응용 가능한 대체 물질들에 대한 연구 현황을 정리하였다.

Transparent Conducting ZnO:$Ga_2O_3$ Thin Films Grown by r.f. Magnetron Sputtering

  • Lee, Yong-Eui;Yun, Sun-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.822-824
    • /
    • 2002
  • Transparent conducting ZnO:$Ga_2O_3$ thin films were deposited on glass substrates using rf magnetron sputtering method. The ZnO:$Ga_2O_3$ thin films were highly c-axis oriented normal to the substrates and had smooth surface features. The sheet resistance of the films was 2.8-6.4 ${\Omega}/{\square}$ at the growth temperature ranging from 25 to 30$^{\circ}C$.

  • PDF

RF 마그네트론 스퍼터링에 의해 합성된 Nb-doped TiO2 투명전극의 특성 (Properties of Nb-doped TiO2 Transparent Conducting Oxide Film Fabricated by RF Magnetron Sputtering)

  • 김민영;조문성;임동건;박재환
    • 한국전기전자재료학회논문지
    • /
    • 제25권3호
    • /
    • pp.204-208
    • /
    • 2012
  • $TiO_2$ ($Ti_{1-x}Nb_xO_2$, x= 0.04~0.06) transparent conducting oxide film was fabricated by RF magnetron sputtering process and their electrical, optical, stability properties were studied. When the Nb 4 at% sputtering target was used with RF power 120 W, pressure 8 mTorr, post-annealing temperature $600^{\circ}C$, the resistivity of TNO film was $4{\times}10^{-4}\;{\Omega}-cm$. The optical transmittance in the visible wavelength was ca. 86%. TNO films require heat treatment during or after the deposition process. When the film was deposited at room temperature and post-annealed at $600^{\circ}C$, the lowest resistivity was obtained. When the TNO film was exposed to high temperature and humidity, the resistivity of the film was rather decreased. The stability to temperature and humidity implies that the TNO film could be a appropriate candidate for In-free, ZnO-free transparent conducting oxide materials.

Improved Electrical Properties of Graphene Transparent Conducting Films Via Gold Doping

  • Kim, Yoo-Seok;Song, Woo-Seok;Kim, Sung-Hwan;Jeon, Cheol-Ho;Lee, Seung-Youb;Park, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.388-388
    • /
    • 2011
  • Graphene, with its unique physical and structural properties, has recently become a proving ground for various physical phenomena, and is a promising candidate for a variety of electronic device and flexible display applications. The physical properties of graphene depend directly on the thickness. These properties lead to the possibility of its application in high-performance transparent conducting films (TCFs). Compared to indium tin oxide (ITO) electrodes, which have a typical sheet resistance of ~60 ${\Omega}/sq$ and ~85% transmittance in the visible range, the chemical vapor deposition (CVD) synthesized graphene electrodes have a higher transmittance in the visible to IR region and are more robust under bending. Nevertheless, the lowest sheet resistance of the currently available CVD graphene electrodes is higher than that of ITO. Here, we report an ingenious strategy, irradiation of MeV electron beam (e-beam) at room temperature under ambient condition,for obtaining size-homogeneous gold nanoparticle decorated on graphene. The nano-particlization promoted by MeV e-beam irradiation was investigated by transmission electron microscopy, electron energy loss spectroscopy elemental mapping, and energy dispersive X-ray spectroscopy. These results clearly revealed that gold nanoparticle with 10~15 nm in mean size were decorated along the surface of the graphene after 1.0 MeV-e-beam irradiation. The fabrication high-performance TCF with optimized doping condition showed a sheet resistance of ~150 ${\Omega}/sq$ at 94% transmittance. A chemical transformation and charge transfer for the metal gold nanoparticle were systematically explored by X-ray photoelectron spectroscopy and Raman spectroscopy. This approach advances the numerous applications of graphene films as transparent conducting electrodes.

  • PDF

나노 소재 기반의 전기장 투과 전극에 관한 연구동향 (Review on Electric-field Transparent Conduct Electrodes Based on Nanomaterials)

  • 이재형;신재혁;이상일;박원일
    • 마이크로전자및패키징학회지
    • /
    • 제27권1호
    • /
    • pp.9-15
    • /
    • 2020
  • The 'field-effect' underlies the operation of most conventional electronic devices. However, effective control and implementation of the field-effect in semiconductor devices are limited due to screening of the electric-field by conducting electrodes. Thus far, the electronic devices have necessarily been designed to avoid or minimize the electric-field screening effect. As an alternative approach to this, a new type of conducting electrodes which would be transparent to both visible light and electric-field while being electrically conductive have been developed. Here, we define these electrodes as 'electric-field transparent electrodes' and provide a review on related work. Particular attention is paid to the material selection and design strategies to enhance the electric-field transparency of the electrodes while maintaining good electrical conductivity and optical transparency. We then introduce potential applications of the electric-field transparent electrodes in electronic and optoelectronic devices.

IZTO 투명 반도체 박막의 전기적 특성에 대한 산소분압의 영향 (Effects of oxygen partial pressure on electrical properties of transparent semiconducting indium zinc tin oxide thin films)

  • 이근영;신한재;한동철;김상우;이도경
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.93-94
    • /
    • 2009
  • The influences of $O_2$ partial pressure on electrical properties of transparent semiconducting indium zinc tin oxide thin films deposited at room temperature by magnetron sputtering have been investigated. The experimental results show that by varying the $O_2$ partial pressure during deposition, electron mobilities of IZTO thin film can be controlled between 7 and $25\;cm^2/Vs$. For conducting films, the carrier concentration and resistivity are ${\sim}\;10^{21}\;cm^{-3}$ and ${\sim}\;10^{-4}\;{\Omega}\;cm$, respectively. Concerning semiconducting films, under 12% $O_2$ partial fraction, the electron concentration is $10^{18}\;cm^{-3}$, showing the promising candidate for the application of transparent thin film transistors.

  • PDF

금속층 두께에 따른 ITO/Ag/ITO 다층 투명 전극의 발열 특성 연구 (A Study on the Exothermic Properties of ITO/Ag/ITO Multilayer Transparent Electrode Depending on Metal Layer Thickness)

  • 민혜진;강예지나;손혜원;신소현;황민호;이현용
    • 한국전기전자재료학회논문지
    • /
    • 제35권1호
    • /
    • pp.37-43
    • /
    • 2022
  • In this study, we investigated the optical, electrical and exothermic characteristics of ITO/Ag/ITO multilayer structures prepared with various Ag thicknesses on quartz and PI substrates. The transparent conducting properties of the ITO/Ag/ITO multilayer films depended on the thickness of the mid-layer metal film. The ITO/Ag (14 nm)/ITO showed the highest Haccke's figure of merit (FOM) of approximately 19.3×10-3 Ω-1. In addition, the exothermic property depended on the substrate. For an applied voltage of 3.7 V, the ITO/Ag (14 nm)/ITO multilayers on quartz and PI substrates were heated up to 110℃ and 200℃, respectively. The bending tests demonstrated a comparable flexibility of the ITO/Ag/IT multilayer to other transparent electrodes, indicating the potential of ITO/Ag/ITO multilayer as a flexible transparent conducting heater.