• Title/Summary/Keyword: Transmission range

Search Result 1,872, Processing Time 0.029 seconds

Chip Implementation of 830-Mb/s/pin Transceiver for LPDDR2 Memory Controller (LPDDR2 메모리 컨트롤러를 위한 830-Mb/s/pin 송수신기 칩 구현)

  • Jong-Hyeok, Lee;Chang-Min, Song;Young-Chan, Jang
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.659-670
    • /
    • 2022
  • An 830-Mb/s/pin transceiver for a controller supporting ×32 LPDDR2 memory is designed. The transmitter consists of eight unit circuits has an impedance in the range of 34Ω ∽ 240Ω, and its impedance is controlled by an impedance correction circuit. The transmitted DQS signal has a phase shifted by 90° compared to the DQ signals. In the receive operation, the read time calibration is performed by per-pin skew calibration and clock-domain crossing within a byte. The implemented transceiver for the LPDDR2 memory controller is designed by using a 55-nm process using a 1.2V supply voltage and has a maximum signal transmission rate of 830 Mb/s/pin. The area and power consumption of each lane are 0.664 mm2 and 22.3 mW, respectively.

X-ray / gamma ray radiation shielding properties of α-Bi2O3 synthesized by low temperature solution combustion method

  • Reddy, B. Chinnappa;Manjunatha, H.C.;Vidya, Y.S.;Sridhar, K.N.;Pasha, U. Mahaboob;Seenappa, L.;Sadashivamurthy, B.;Dhananjaya, N.;Sathish, K.V.;Gupta, P.S. Damodara
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1062-1070
    • /
    • 2022
  • In the present communication, pure and stable α-Bismuth Oxide (Bi2O3) nanoparticles (NPs) were synthesized by low temperature solution combustion method using urea as a fuel and calcined at 500℃. The synthesized sample was characterized by using powder X-ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), Energy dispersive X-ray analysis (EDAX), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and UV-Visible absorption spectroscopy. The PXRD pattern confirms the formation of mono-clinic, stable and low temperature phase α-Bi2O3. The direct optical energy band gap was estimated by using Wood and Tauc's relation which was found to be 2.81 eV. The characterized sample was studied for X-ray/gamma ray shielding properties in the energy range 0.081-1.332 MeV using NaI (Tl) detector and multi channel analyzer (MCA). The measured shielding parameters agrees well with the theory, whereas, slight deviation up to 20% is observed below 356 keV. This deviation is mainly due to the influence of atomic size of the target medium. Furthermore an accurate theory is necessary to explain the interaction of X-ray/gamma ray with the NPs.The present work opens new window to use this facile, economical, efficient, low temperature method to synthesize nanomaterials for X-ray/gamma ray shielding purpose.

Design of Indoor Location-based IoT Service Platform

  • Kim, Bong-Han
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.231-238
    • /
    • 2022
  • In this paper, among short-range wireless communication technologies such as Beacon, Bluetooth, UWB (Ultra-wideband), ZigBee, NFC (Near Field Communication), Z-Wave, 6LoWPAN (IPv6 over Low power WPAN), D2D (Device to Device), etc., proposed an IoT service platform based on a beacon that can provide indoor positioning. And, a beacon-linked web server was designed by blocking indiscriminate beacon spam signals and applying REST web service technology with flexibility and scalability. Data accessibility between different devices was verified by testing the success rate of data transmission, the success rate of blocking beacon push, the success rate of IoT interlocking processing, the accuracy of location positioning, and the success rate of REST web service-based data processing. Through the designed IoT service platform, various proposals and research on short-distance-based business models and service platforms will be conducted in the future.

Proposed Message Transit Buffer Management Model for Nodes in Vehicular Delay-Tolerant Network

  • Gballou Yao, Theophile;Kimou Kouadio, Prosper;Tiecoura, Yves;Toure Kidjegbo, Augustin
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.153-163
    • /
    • 2023
  • This study is situated in the context of intelligent transport systems, where in-vehicle devices assist drivers to avoid accidents and therefore improve road safety. The vehicles present in a given area form an ad' hoc network of vehicles called vehicular ad' hoc network. In this type of network, the nodes are mobile vehicles and the messages exchanged are messages to warn about obstacles that may hinder the correct driving. Node mobilities make it impossible for inter-node communication to be end-to-end. Recognizing this characteristic has led to delay-tolerant vehicular networks. Embedded devices have small buffers (memory) to hold messages that a node needs to transmit when no other node is within its visibility range for transmission. The performance of a vehicular delay-tolerant network is closely tied to the successful management of the nodes' transit buffer. In this paper, we propose a message transit buffer management model for nodes in vehicular delay tolerant networks. This model consists in setting up, on the one hand, a policy of dropping messages from the buffer when the buffer is full and must receive a new message. This drop policy is based on the concept of intermediate node to destination, queues and priority class of service. It is also based on the properties of the message (size, weight, number of hops, number of replications, remaining time-to-live, etc.). On the other hand, the model defines the policy for selecting the message to be transmitted. The proposed model was evaluated with the ONE opportunistic network simulator based on a 4000m x 4000m area of downtown Bouaké in Côte d'Ivoire. The map data were imported using the Open Street Map tool. The results obtained show that our model improves the delivery ratio of security alert messages, reduces their delivery delay and network overload compared to the existing model. This improvement in communication within a network of vehicles can contribute to the improvement of road safety.

Fe-Nanoparticle Amalgamation Using Lagenaria siceraria Leaf Aqueous Extract with Focus on Dye Removal and Antibacterial Efficacy

  • Kirti;Suantak Kamsonlian;Vishnu Agarwal;Ankur Gaur;Jin-Won Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.287-295
    • /
    • 2023
  • Iron nanoparticles (Fe-NPs) were synthesized employing Lagenaria siceraria (LS) leaf aqueous extract as a reducing and capping medium to remove methylene blue (MB) dye and have antibacterial properties against G-negative (Escherichia coli) and G-positive bacteria (Staphylococcus aureus). The formation of LS-Fe-NPs (Lagenaria-siceraria-iron-nanoparticles) was confirmed by a change in color from pale yellow to dark brown. Characterization techniques, such as particle size analysis (PSA), transmission electron microscopy (TEM) and scanning electron microscopy (SEM), were employed to prove nano spherical particles of size range between 80-100 nm. Phytochemicals and the presence of iron in LS-Fe-NPs nanoparticles were proved by UV-visible spectrophotometry. Further, Fourier transform infrared spectroscopy (FTIR) analysis results confirmed the existence of bioactive molecules in the plants. The magnetic property was analyzed using a vibrating sample magnetometer (VSM), which displayed that the synthesized nanoparticles were superparamagnetic and exhibiting a saturation magnetization of 12.5 emu/g. Synthesized magnetic nanoparticles were used in methylene blue (MB) dye removal through adsorption. About 83% of 100 mg/L MB dye was removed within 120 min at pH 6 with a maximum adsorption capacity of 246.8 mg/g. Antibacterial efficacy of LS-Fe-NPs was screened against G-negative (Escherichia coli) and G-positive bacteria (Staphylococcus aureus), respectively, and found that LS-Fe-NPs were effective against Staphylococcus aureus.

Behavior of Bond-type Shallow Anchors in Rock Masses ( I ) - Metamorphic Rock (gneiss) at Taean Test Site - (암반에 근입된 부착형 앵커의 거동특성 (I) - 태안지역 편마암 -)

  • Kim, Dae-Hong;Lee, Dae-Soo;Chun, Byung-Sik;Kim, Byung-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.45-55
    • /
    • 2006
  • This paper presents the results of full-scale uplift load tests performed on 30 passive anchors grouted to various lengths at Taean site in Korea. Various rock types were tested, ranging from highly weathered to sound gneiss. Rock anchors were installed over a wide range of rock types and qualities with a fixed anchored depth of $1{\sim}4m$. The majority of installations used SD4O-D51 no high grade steel rebar to induce rock failure prior to rod failure. In many tests, rock failure was reached and the ultimate loads were recorded along with observations of the shape and extent of the failure surface. The test results, the failure mechanisms as well as uplift capacities of rock anchors depend mostly on rock type and quality, embedded fixed length, and the strength of rebar. Based on test results, the main parameters governing the uplift capacity of the rock anchor system were determined.

Uplift Capacity Estimation of Bond-type Rock Anchors Based on Full Scale Field Tests (실규모 현장시험을 통한 부착형 암반앵커의 인발저항력 평가)

  • Kim, Dae-Hong;Oh, Gi-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.5-15
    • /
    • 2009
  • This paper presents the results of full-scale uplift load tests performed on 24 passive anchors grouted to various lengths at Okchun and Changnyong site. Rock anchors were installed over a wide range of rock types and qualities with a fixed anchored depth of 1~6 m. The majority of installations used D51 mm high grade steel rebar to induce rock failure prior to rod failure. However, a few installations included the use of D32 mm rebar at relatively deeper anchored depth so as to induce rod failure. In many tests, rock failure was reached and the ultimate loads were recorded along with observations of the shape and extent of the failure surface. In addition to field tests, laboratory pullout tests were conducted to determine bond strength and bond stress-shear slip relation at the tendon/grout interface when a corrosion protection sheath is installed in the cement-based grout. The test results show that the ultimate tendon-grout bond strength is measured from 18~25% of unconfined compressive strength of grout. One of the important results from these tests is that the measured strains along the corrosion protection sheath were so small that practically the reduction of bond strength by the presence of sheath would be negligible.

Thermodynamic Process Design of CaF2 Single Crystal Growth for Optical Applications (광학응용 CaF2 단결정성장을 위한 열역학적 공정설계)

  • Seong-Min Jeong;Hae-Jin Jeon;Yun-Ji Shin;Hyoung-Seuk Choi;Si-Young Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.197-202
    • /
    • 2023
  • Calcium fluoride (CaF2) single crystal is applied to numerous industrial applications, especially for optical uses. To have excellent optical transmission properties, however, CaF2 crystals should be carefully fabricated through liquid-phase crystal growth techniques. In this study, as one of the early stage research activities to grow CaF2 crystals with a good transmittance at the ultraviolet wavelength range, computational thermodynamic models were provided to deepen the understanding of the crystal growing processes of CaF2 under various conditions. To remove point defects and oxygen impurities in the grown CaF2 crystals, the system was thermodynamically evaluated to get optimal process conditions. From the reviews of previous experimental studies, computational thermodynamic approaches were found to be an effective and powerful tool to understand the meaning of the crystal growth processes and to obtain optimal process conditions.

Coastal upwelling observed off the East coast of Korea and variability of passive sound detection environment (동해 연안에서 관측된 용승현상과 수동 음탐환경의 변화)

  • Sang-Shin, Byun;Chang-Bong, Cho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.601-609
    • /
    • 2022
  • In August 2007, coastal upwelling occurred off the east coast of Korea, and vertical water temperature and salinity data were obtained from a real-time surface ocean buoy. Based on the time series observation data, a vertical sound velocity structure was calculated before, during, and after the occurrence of the coastal upwelling, and how the coastal upwelling affects the sound propagation and detection environment through acoustic modeling considering the horizontal scale and actual seabed topography. As a result of comparing and analyzing the low-frequency (500 Hz) sound transmission loss and the target detection range by depth using the parabolic equation model, it was analyzed that if coastal upwelling occurs, a detection gain of up to about 10 dB can be expected. In addition, through this study, it was confirmed that the characteristics of sound propagation can be greatly changed even in a short period of about 2 to 3 days before and after coastal upwelling.

Real-time wireless marine radioactivity monitoring system using a SiPM-based mobile gamma spectroscopy mounted on an unmanned marine vehicle

  • Min Sun Lee;Soo Mee Kim;Mee Jang;Hyemi Cha;Jung-Min Seo;Seungjae Baek;Jong-Myoung Lim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2158-2165
    • /
    • 2023
  • Marine radioactivity monitoring is critical for taking immediate action in case of unexpected nuclear accidents at nuclear facilities located near coastal areas. Especially when the level of contamination is not predictable, mobile monitoring systems will be useful for wide-area ocean radiation survey and for determination of the level of radioactivity. Here, we used a silicon photomultiplier and a high-efficiency GAGG crystal to fabricate a compact, battery-powered gamma spectroscopy that can be used in an ocean environment. The developed spectroscopy has compact dimensions of 6.5 × 6.5× 8 cm3 and weighs 560 g. We used LoRa, a low-power wireless protocol for communication. Successful data transmission was achieved within 1.4 m water depth. The developed gamma spectroscopy was able to detect radioactivity from a 137Cs point source (3.7 kBq) at a distance of 20 cm in water. Moreover, we demonstrated an unmanned radioactivity monitoring system in a real sea by combining unmanned surface vehicle with the developed gamma spectroscopy. A hidden 137Cs source (3.07 MBq) was detected by the unmanned system at a distance of 3 m. After successfully testing the developed mobile spectroscopy in an ocean environment, we believe that our proposed system will be an effective solution for mobile real-time marine radioactivity monitoring.