• Title/Summary/Keyword: Transmission electron microscopy sample

Search Result 144, Processing Time 0.018 seconds

Transmission Electron Microscopy Sample Preparation of Ge2Sb2Te5 Nanowire Using Electron Beam

  • Lee, Hee-Sun;Lee, Jun-Young;Yeo, Jong-Souk
    • Applied Microscopy
    • /
    • v.45 no.4
    • /
    • pp.199-202
    • /
    • 2015
  • A simple and novel transmission electron microscopy (TEM) sample preparation method for phase change nanowire is investigated. A $Ge_2Sb_2Te_5$ (GST) nanowire TEM sample was meticulously prepared using nanomanipulator and gas injection system in a field emission scanning electron microscopy for efficient and accurate TEM analysis. The process can minimize the damage during the TEM sample preparation of the nanowires, thus enabling the crystallographic analysis of as-grown GST nanowires without unexpected phase transition caused by e-beam heating.

Sublimable materials facilitate the TEM sample preparation of oil-soluble nanomaterials

  • Yu-Hao Deng
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.21.1-21.3
    • /
    • 2020
  • Sample preparation is significantly important to the high-resolution transmission electron microscopy (HRTEM) characterization of nanomaterials. However, many general organic solvents can dissolve the necessary organic polymer support layer in TEM grid, which causes it difficult to obtain high-quality samples of oil-soluble nanomaterials. In this study, a new sample preparation method for oil-soluble nanomaterials has been developed by using the sublimable material as a transition layer. Experiments also show that there is no damage to TEM grids and high-quality HRTEM images can be obtained via this method. This approach paves the way to applicable HRTEM sample preparation of oil-soluble nanomaterials.

Cross-Sectional Transmission Electron Microscopy Sample Preparation of Soldering Joint Using Ultramicrotomy

  • Bae, Jee-Hwan;Kwon, Ye-Na;Yang, Cheol-Woong
    • Applied Microscopy
    • /
    • v.46 no.3
    • /
    • pp.167-169
    • /
    • 2016
  • Solder/electroless nickel immersion gold (ENIG) joint sample which is comprised of dissimilar materials with different mechanical properties has limited the level of success in preparing thin samples for transmission electron microscopy (TEM). This short technical note reports the operation parameters for ultramicrotomy of solder joint sample and TEM analysis results. The solder joint sample was successfully sliced to 50~70 nm thick lamellae at slicing speed of 0.8~1.2 mm/s using a boat-type $45^{\circ}$ diamond knife. Ultramicrotomy can be applied as a routine sample preparation technique for TEM analysis of solder joints.

Electron Microscopy for the Morphological Characterization of Nanocellulose Materials (전자현미경을 이용한 나노셀룰로오스 물질의 형태학적 특성 분석 연구)

  • Kwon, Ohkyung;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.1
    • /
    • pp.5-18
    • /
    • 2016
  • Electron microscopy is an important investigation and analytical method for the morphological characterization of various cellulosic materials, such as micro-crystalline cellulose (MCC), microfibrillated cellulose (MFC), nanofibrillated cellulose (NFC), and cellulose nanocrystals (CNC). However, more accurate morphological analysis requires high-quality micrographs acquired from the proper use of an electron microscope and associated sample preparation methods. Understanding the interaction of electron and matter as well as the importance of sample preparation methods, including drying and staining methods, enables the production of high quality images with adequate information on the nanocellulosic materials. This paper provides a brief overview of the micro and nano structural analysis of cellulose, as investigated using transmission and scanning electron microscopy.

Transmission Electron Microscope Sampling Method for Three-Dimensional Structure Analysis of Two-Dimensional Soft Materials

  • Lee, Sang-Gil;Lee, Ji-Hyun;Yoo, Seung Jo;Datta, Suvo Jit;Hwang, In-Chul;Yoon, Kyung-Byung;Kim, Jin-Gyu
    • Applied Microscopy
    • /
    • v.45 no.4
    • /
    • pp.203-207
    • /
    • 2015
  • Sample preparation is very important for crystal structure analysis of novel nanostructured materials in electron microscopy. Generally, a grid dispersion method has been used as transmission electron microscope (TEM) sampling method of nano-powder samples. However, it is difficult to obtain the cross-sectional information for the tabular-structured materials. In order to solve this problem, we have attempted a new sample preparation method using focused ion beam. Base on this approach, it was possible to successfully obtain the electron diffraction patterns and high-resolution TEM images of the cross-section of tabular structure. Finally, we were able to obtain three-dimensional crystallographic information of novel zeolite nano-crystal of the tabular morphology by applying the new sample preparation technique.

The Effects of Electron Beam Exposure Time on Transmission Electron Microscopy Imaging of Negatively Stained Biological Samples

  • Kim, Kyumin;Chung, Jeong Min;Lee, Sangmin;Jung, Hyun Suk
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.150-154
    • /
    • 2015
  • Negative staining electron microscopy facilitates the visualization of small bio-materials such as proteins; thus, many electron microscopists have used this conventional method to visualize the morphologies and structures of biological materials. To achieve sufficient contrast of the materials, a number of imaging parameters must be considered. Here, we examined the effects of one of the fundamental imaging parameters, electron beam exposure time, on electron densities generated using transmission electron microscopy. A single site of a negatively stained biological sample was illuminated with the electron beam for different times (1, 2, or 4 seconds) and sets of micrographs were collected. Computational image processing demonstrated that longer exposure times provide better electron densities at the molecular level. This report describes technical procedures for testing parameters that allow enhanced evaluations of the densities of electron microscopy images.

Cross-Sectional Transmission Electron Microscopy Specimen Preparation Technique by Backside Ar Ion Milling

  • Yoo, Jung Ho;Yang, Jun-Mo
    • Applied Microscopy
    • /
    • v.45 no.4
    • /
    • pp.189-194
    • /
    • 2015
  • Backside Ar ion milling technique for the preparation of cross-sectional transmission electron microscopy (TEM) specimens, and backside-ion milling combined with focused ion beam (FIB) operation for electron holography were introduced in this paper. The backside Ar ion milling technique offers advantages in preparing cross-sectional specimens having thin, smooth and uniform surfaces with low surface damages. The back-side ion milling combined with the FIB technique could be used to observe the two-dimensional p-n junction profiles in semiconductors with the sample quality sufficient for an electron holography study. These techniques have useful applications for accurate TEM analysis of the microstructure of materials or electronic devices such as arrayed hole patterns, three-dimensional integrated circuits, and also relatively thick layers (> $1{\mu}m$).

TEM sample preparation of microsized LiMn2O4 powder using an ion slicer

  • Jung Sik Park;Yoon‑Jung Kang;Sun Eui Choi;Yong Nam Jo
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.19.1-19.7
    • /
    • 2021
  • The main purpose of this paper is the preparation of transmission electron microscopy (TEM) samples from the microsized powders of lithium-ion secondary batteries. To avoid artefacts during TEM sample preparation, the use of ion slicer milling for thinning and maintaining the intrinsic structure is described. Argon-ion milling techniques have been widely examined to make optimal specimens, thereby making TEM analysis more reliable. In the past few years, the correction of spherical aberration (Cs) in scanning transmission electron microscopy (STEM) has been developing rapidly, which results in direct observation at an atomic level resolution not only at a high acceleration voltage but also at a deaccelerated voltage. In particular, low-kV application has markedly increased, which requires a sufficiently transparent specimen without structural distortion during the sample preparation process. In this study, sample preparation for high-resolution STEM observation is accomplished, and investigations on the crystal integrity are carried out by Cs-corrected STEM.

Transmission Electron Microscopy Specimen Preparation of Delicate Materials Using Tripod Polisher

  • Cha, Hyun-Woo;Kang, Min-Chul;Shin, Keesam;Yang, Cheol-Woong
    • Applied Microscopy
    • /
    • v.46 no.2
    • /
    • pp.110-115
    • /
    • 2016
  • Transmission electron microscopy (TEM) is a powerful tool for analyzing a broad range of materials and provides localized information about the microstructure. However, the analysis results are strongly influenced by the quality of the thin foil specimen. Sample preparation for TEM analysis requires considerable skill, especially when the area of interest is small or the material of interest is difficult to thin because of its high hardness and its mechanical instability when thinned. This article selectively reviews recent advances in TEM sample preparation techniques using a tripod polisher. In particular, it introduces two typical types (fl at type and wedge type) of TEM sample preparation and the benefits and drawbacks of each method; finally, a method of making better samples for TEM analysis is suggested.

How to Get Well-Preserved Samples for Transmission Electron Microscopy

  • Park, Chang-Hyun;Kim, Hyun-Wook;Rhyu, Im Joo;Uhm, Chang-Sub
    • Applied Microscopy
    • /
    • v.46 no.4
    • /
    • pp.188-192
    • /
    • 2016
  • Proper sample preparation prior to microscopy is necessary for maintaining the components of tissues in a state as close to a living state as possible. For optimal preservation of biological samples, the sampling conditions are as important as the fixation itself. Various factors influence the selection and fixation efficiencies of a fixative, including sample size, osmolarity, pH, penetration rate and depth, fixative temperature, fixation time, fixative concentration, fixative amount, and retention time. Therefore, several factors for selecting and administering fixation procedures are evaluated pertaining to optimal sample preparation for transmission electron microscopy.