• Title/Summary/Keyword: Transmission Tower

Search Result 279, Processing Time 0.023 seconds

Seismic failure analysis and safety assessment of an extremely long-span transmission tower-line system

  • Tian, Li;Pan, Haiyang;Ma, Ruisheng;Dong, Xu
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.305-315
    • /
    • 2019
  • Extremely long-span transmission tower-line system is an indispensable portion of an electricity transmission system, and its failures or collapse can impact on the entire electricity grid, affect the modern life, and cause great economic losses. It is therefore imperative to investigate the failure and safety of the transmission tower subjected to ground motions. In the present study, a detailed finite element (FE) model of a representative extremely long-span transmission tower-line system is established. A segmental damage indicator (SDI) is proposed to quantitatively assess the damage level of each segment of the transmission tower under earthquakes. Additionally, parametric studies are conducted to investigate the influence of different ground motions and incident angles on the ultimate capacity and weakest segment of the transmission tower. Finally, the collapse fragility curve in terms of the maximum SDI value and PGA is plotted for the exampled transmission tower. The results show that the proposed SDI can quantitatively assess the damage level of the segments, and thus determine the ultimate capacity and weakest segment of the transmission tower. Moreover, the different ground motions and incident angles have a significant influence on the SDI values of the transmission tower, and the collapse fragility curve is utilized to evaluate the collapse resistant capacity of the transmission tower subjected to ground motions.

Rotational Viscoelastic Dampers for the Mitigation of Wind Loads on Transmission Tower Transferred from Transmission Lines (송전선에 의해 송전철탑에 전달되는 풍하중 저감을 위한 회전형 점탄성감쇠기)

  • Moon, Byoung-Wook;Min, Kyung-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.420-427
    • /
    • 2006
  • In this study, wind loads transmitted to a transmission tower from transmission lines are mitigated using rotational viscoelastic dampers. First, the wind load characteristics in a transmission tower is investigated considering the effect of the transmission lines through stochastic analysis. The assemblage of the transmission line and insulator are modeled as a double pendulum system connected to the SDOF model of the tower. From the result of the stochastic analysis, the background component of the overturing moment caused by the wind loads acting on the transmission lines are found to have considerable portion in the total overturning moment. Based on this observation result, a strategy Installing rotational viscoelastic damper (VED) between tower arm and transmission line is proposed for the mitigation of the transmission line reactions, which play a role as dynamic loads on a transmission tower. For the purpose of verification, time history analysis is conducted for different wind velocities and VED parameters. The analysis result shows that the rotational VED is effective for the mitigation of the background component rather than the resonance component of the transmission line reactions and achieves the reduction ratio of 50% even for higher wind speed.

Development of the Corrosion Deterioration Inspection Tool for Transmission Tower Members

  • Woo, Sangkyun;Chu, Inyeop;Youn, Byongdon;Kim, Kijung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.293-298
    • /
    • 2016
  • Recently, interests for maintenance of transmission tower are increasing to extend life of structures and reduce maintenance cost. However, existing classical diagnosis method of corrosion deteriorated degree on the transmission tower steel members, visual inspection, has a problem that error often due to difference of inspector's individual knowledge and experience. In order to solve the problem, this study carried out to develop the corrosion deterioration inspection tool for transmission tower steel members. This tool is composed of camera equipment and computer-aided diagnosis system. We standardized the photographing method by camera equipment to obtain suitable pictures for image processing. Diagnosis system was designed to evaluate automatically degree of corrosion deterioration for member of transmission tower on the basis of the RGB color image processing techniques. It is anticipated that developed the corrosion deterioration inspection tool will be very helpful in decision of optimal maintenance time for transmission tower corrosion.

A Study of the Slim Design of Overhead Transmission Tower (가공송전철탑 경량화 설계에 관한 연구)

  • Lee, Jung-Won;Lee, Won-Kyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.560-565
    • /
    • 2010
  • This paper presents the design factor of an overhead transmission tower structure in order to reduce the tower weight. The behaviour of transmission tower structures are affected by the horizontal angle of the tower structure, the equivalent wind pressure group, the slope of the main post of the tower, the separation of the internode and the use of high-strength materials in their construction. Tower weight can be reduced by approximately 30% reduce weight by means of optimal design based on a consideration of all the above factors. In addition, the design of the foundation of the tower with the shear key installation to increase horizontal support together with a modified angle of inclination to the ground can reduce by about 37% the amount of concrete used during construction. The area of ground disturbed by the construction of the tower foundation can thus be reduced by approximately 33%. Therefore it is possible to build an environmently-friendly T/L tower with the mechanical properties of existing towers.

Dynamic response of an overhead transmission tower-line system to high-speed train-induced wind

  • Zhang, Meng;Liu, Ying;Liu, Hao;Zhao, Guifeng
    • Wind and Structures
    • /
    • v.34 no.4
    • /
    • pp.335-353
    • /
    • 2022
  • The current work numerically investigates the transient force and dynamic response of an overhead transmission tower-line structure caused by the passage of a high-speed train (HST). Taking the CRH2C HST and an overhead transmission tower-line structure as the research objects, both an HST-transmission line fluid numerical model and a transmission tower-line structure finite element model are established and validated through comparison with experimental and theoretical data. The transient force and typical dynamic response of the overhead transmission tower-line structure due to HST-induced wind are analyzed. The results show that when the train passes through the overhead transmission tower-line structure, the extreme force on the transmission line is related to the train speed with a significant quadratic function relationship. Once the relative distance from the track is more than 15 m, the train-induced force is small enough to be ignored. The extreme value of the mid-span dynamic response of the transmission line is related to the train speed and span length with a significant linear functional relationship.

Experimental and numerical study on the collapse failure of long-span transmission tower-line systems subjected to extremely severe earthquakes

  • Tian, Li;Fu, Zhaoyang;Pan, Haiyang;Ma, Ruisheng;Liu, Yuping
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.513-522
    • /
    • 2019
  • A long-span transmission tower-line system is indispensable for long-distance electricity transmission across a large river or valley; hence, the failure of this system, especially the collapse of the supporting towers, has serious impacts on power grids. To ensure the safety and reliability of transmission systems, this study experimentally and numerically investigates the collapse failure of a 220 kV long-span transmission tower-line system subjected to severe earthquakes. A 1:20 scale model of a transmission tower-line system is constructed in this research, and shaking table tests are carried out. Furthermore, numerical studies are conducted in ABAQUS by using the Tian-Ma-Qu material model, the results of which are compared with the experimental findings. Good agreement is found between the experimental and numerical results, showing that the numerical simulation based on the Tian-Ma-Qu material model is able to predict the weak points and collapse process of the long-span transmission tower-line system. The failure of diagonal members at weak points constitutes the collapse-inducing factor, and the ultimate capacity and weakest segment vary with different seismic wave excitations. This research can further enrich the database for the seismic performance of long-span transmission tower-line systems.

Response evaluation and vibration control of a transmission tower-line system in mountain areas subjected to cable rupture

  • Chen, Bo;Wu, Jingbo;Ouyang, Yiqin;Yang, Deng
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.151-171
    • /
    • 2018
  • Transmission tower-line systems are commonly slender and generally possess a small stiffness and low structural damping. They are prone to impulsive excitations induced by cable rupture and may experience strong vibration. Excessive deformation and vibration of a transmission tower-line system subjected to cable rupture may induce a local destruction and even failure event. A little work has yet been carried out to evaluate the performance of transmission tower-line systems in mountain areas subjected to cable rupture. In addition, the control for cable rupture induced vibration of a transmission tower-line system has not been systematically conducted. In this regard, the dynamic response analysis of a transmission tower-line system in mountain areas subjected to cable rupture is conducted. Furthermore, the feasibility of using viscous fluid dampers to suppress the cable rupture-induced vibration is also investigated. The three dimensional (3D) finite element (FE) model of a transmission tower-line system is first established and the mathematical model of a mountain is developed to describe the equivalent scale and configuration of a mountain. The model of a tower-line-mountain system is developed by taking a real transmission tower-line system constructed in China as an example. The mechanical model for the dynamic interaction between the ground and transmission lines is proposed and the mechanical model of a viscous fluid damper is also presented. The equations of motion of the transmission tower-line system subjected to cable rupture without/with viscous fluid dampers are established. The field measurement is carried out to verify the analytical FE model and determine the damping ratios of the example transmission tower-line system. The dynamic analysis of the tower-line system is carried out to investigate structural performance under cable rupture and the validity of the proposed control approach based on viscous fluid dampers is examined. The made observations demonstrate that cable rupture may induce strong structural vibration and the implementation of viscous fluid dampers with optimal parameters can effectively suppress structural responses.

765kV Steel Tubular Tower Design On Considering Stringing Load (가선작업 하중을 고려한 765kV 강관철탑 설계)

  • Jung, Tay-Ho;Kim, Shin-Chul;Yoon, Young-Soon;Shin, Tae-Woo;Lee, An-Keun;Kim, Kwang-Youl
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.935-937
    • /
    • 1998
  • The stringing load was added to tower design that consider the active load in 765kV transmission line construction. The nominal auxiliary members of steell tubular tower arm were altered into stress members by means of three dimensional design analysis method. 765kV transmission line construction also use self-standing tower that does not install temporary wire which support the section tower placed between drum field and engine field when stringing process.

  • PDF

Wind Load Mitigation for Transmission Tower using Viscoelastic Damper (점탄성감쇠기를 이용한 송전철탑 풍하중의 저감)

  • Min, Kyung-Won;Park, Ji-Hun;Moon, Byoung-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.955-958
    • /
    • 2005
  • In this study, the wind load characteristics for a transmission tower is investigated considering the effect of the transmission lines through stochastic analysis. The assemblage of the transmission line and insulator are modeled as a double pendulum system connected to the SDOF model of the tower It is observed that the background component of the overturing moment induced by the wind response of the transmission line has considerable portion in the total overturning moment. Based on this result, a rotational viscoelastic damper (VED) is proposed for the mitigation of the transmission line reactions, which act as wind load transferred to the tower. To verify the effectiveness of the proposed strategy, time history analysis is conducted for different wind velocities and VED damping constants. From the analysis, the proposed VED is proved to be effective for mitigation of the background component rather than the resonance component of the transmission line reaction.

  • PDF

Wind-rain-induced vibration test and analytical method of high-voltage transmission tower

  • Li, Hong-Nan;Tang, Shun-Yong;Yi, Ting-Hua
    • Structural Engineering and Mechanics
    • /
    • v.48 no.4
    • /
    • pp.435-453
    • /
    • 2013
  • A new computational approach for the rain load on the transmission tower is presented to obtain the responses of system subjected to the wind and rain combined excitations. First of all, according to the similarity theory, the aeroelastic modeling of high-voltage transmission tower is introduced and two kinds of typical aeroelastic models of transmission towers are manufactured for the wind tunnel tests, which are the antelope horn tower and pole tower. And then, a formula for the pressure time history of rain loads on the tower structure is put forward. The dynamic response analyses and experiments for the two kinds of models are carried out under the wind-induced and wind-rain-induced actions with the uniform and turbulent flow. It has been shown that the results of wind-rain-induced responses are bigger than those of only wind-induced responses and the rain load influence on the transmission tower can't be neglected during the strong rainstorm. The results calculated by the proposed method have a good agreement with those by the wind tunnel test. In addition, the wind-rain-induced responses along and across the wind direction are in the same order of response magnitude of towers.