• Title/Summary/Keyword: Transmission Line Capacity

Search Result 170, Processing Time 0.026 seconds

Allocation of Transmission Reliability Charge (송전선 이용료상의 적정 신뢰도비용 산정방안)

  • Yoo, Chong-Il;Shin, Yong-Gyun;H.Kim, Bal-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.67-69
    • /
    • 2001
  • It is required to develop a rational transmission tariff system to ensure the fair participation of the players in the market. This study suggests an improved transmission tariff system which classifies the line capacity into line usage and reliability capacity based on their use and reasonably allocates the costs incurred by each of them to users. In addition, it takes the system load variations into consideration.

  • PDF

Dynamic Line Rating Prediction in Overhead Transmission Lines Using Artificial Neural Network (신경회로망을 이용한 송전선 허용용량 예측기법)

  • Noh, Shin-Eui;Kim, Yi-Gwhan;Lim, Sung-Hun;Kim, Il-Dong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.1
    • /
    • pp.79-87
    • /
    • 2014
  • With the increase of demand for electricity power, new construction and expansion of transmission lines for transport have been required. However, it has been difficult to be realized by such opposition from environmental groups and residents. Therefore, the development of techniques for effective use of existing transmission lines is more needed. In this paper, the major variables to affect the allowable transmission capacity in an overhead transmission lines were selected and the dynamic line rating (DLR) method using artificial neural networks reflecting unique environment-heat properties was proposed. To prove the proposed method, the analyzed results using the artificial neural network were compared with the ones obtained from the existing method. The analyzed results using the proposed method showed an error of 0.9% within ${\pm}$, which was to be practicable.

Dynamic Thermal Rating of Transmission Line Based on Environmental Parameter Estimation

  • Sun, Zidan;Yan, Zhijie;Liang, Likai;Wei, Ran;Wang, Wei
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.386-398
    • /
    • 2019
  • The transmission capacity of transmission lines is affected by environmental parameters such as ambient temperature, wind speed, wind direction and so on. The environmental parameters can be measured by the installed measuring devices. However, it is impossible to install the environmental measuring devices throughout the line, especially considering economic cost of power grid. Taking into account the limited number of measuring devices and the distribution characteristics of environment parameters and transmission lines, this paper first studies the environmental parameter estimating method of inverse distance weighted interpolation and ordinary Kriging interpolation. Dynamic thermal rating of transmission lines based on IEEE standard and CIGRE standard thermal equivalent equation is researched and the key parameters that affect the load capacity of overhead lines is identified. Finally, the distributed thermal rating of transmission line is realized by using the data obtained from China meteorological data network. The cost of the environmental measurement device is reduced, and the accuracy of dynamic rating is improved.

The Study on the Efficient HVDC Capacity Considering Extremely Low Probability of 765kV Double Circuit Transmission Lines Trip

  • Moon, Bong-Soo;Ko, Boyung;Choi, Jin-San
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1046-1052
    • /
    • 2017
  • The load on the power grid of South Korea is expected to grow continuously until the late 2020s, and it is necessary to increase the transfer capacity from the Eastern grid to the Seoul-Gyeonggi region by reinforcing the transmission network for the electric power system to remain stable. To this end, the grid reinforcement by two bipole LCC HVDC transmission systems have been considered on account of the public acceptability and high growth of the fault current level, even though an additional 765kV system construction is more economical. Since the probability of the existing 765kV double circuit transmission line trip is extremely low, a dynamic simulation study was carried out to estimate the efficient HVDC capacity able to stabilize the transient stability by utilizing the HVDC overload capability. This paper suggests the application plan to reduce the HVDC construction capacity with ensuring the transient stability during the 765kV line trip.

Estimation of the Feeding Line Capacity according to Feeding Mehtod (급전방식에 따른 급전선로의 전송용량 예측)

  • Lee, Chang-Mu;Lee, Han-Min;Oh, Se-Chan;Kim, Gil-Dong;Jang, Gil-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1169-1170
    • /
    • 2007
  • The primary objective of this paper is to examine the capacity of electrical transmission in electric railway according to the type of feeding system. Although supply capacity of railway substation are sufficient and there is no accident, due to the electrical transmission limit of feeding line the voltage breakdown may occur when large capacity of electric load at feeding line exist. So, using multi-port analysis model, we draw P-V curve due to feeding method, load, location and power factor of electric locomotive.

  • PDF

A An Experimental Study for Load Capacity and Dip Characteristic in Overhead Transmission Lines (가공송전선의 부하용량과 이도 특성에 관한 실험적 연구)

  • Kim, Sung-Duck
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.177-183
    • /
    • 2010
  • Overhead transmission lines in domestic area have been built by several different design standards of dip and ground clearance. This paper describes an experimental study for evaluating load capacity and dip margin in overhead transmission lines. Such design standards for selection of overhead transmission conductors, dip and ground clearance, as well as electrical equipment technical standard are discussed. Based on daily load and weather data, several characteristics such as line utilization factor, load factor, conductor temperature and dip, etc. are analyzed, and compared with the specified levels of design standards. As a result, it is verified that DLR method can be a clue of the solving of the problem, for occurring in old transmission conductors which may be rarely operating below standards.

Electromagnetic Environment of Transmission Line Based on Full Parameter Online Estimation

  • Sun, Zidan;Zhou, Xiaofeng;Liang, Likai;Mo, Yang
    • Journal of Information Processing Systems
    • /
    • v.16 no.2
    • /
    • pp.394-405
    • /
    • 2020
  • The parameters of transmission lines have an influence on the electromagnetic environment surrounding the line. This paper proposes a method based on phasor measurement unit (PMU) and supervisory control and data acquisition (SCADA) to achieve online estimation of transmission line full parameters, such as resistance, reactance and susceptance. The proposed full parameter estimation method is compared with the traditional method of estimating resistance independently based on SCADA system. Then, the electromagnetic environment is analyzed based on the different parameter estimation methods. The example results illustrate that online estimation of transmission line full parameters is more accurate in the analysis of electromagnetic environment, which further confirms its necessity and significance in engineering application.

Experimental and numerical study on the collapse failure of long-span transmission tower-line systems subjected to extremely severe earthquakes

  • Tian, Li;Fu, Zhaoyang;Pan, Haiyang;Ma, Ruisheng;Liu, Yuping
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.513-522
    • /
    • 2019
  • A long-span transmission tower-line system is indispensable for long-distance electricity transmission across a large river or valley; hence, the failure of this system, especially the collapse of the supporting towers, has serious impacts on power grids. To ensure the safety and reliability of transmission systems, this study experimentally and numerically investigates the collapse failure of a 220 kV long-span transmission tower-line system subjected to severe earthquakes. A 1:20 scale model of a transmission tower-line system is constructed in this research, and shaking table tests are carried out. Furthermore, numerical studies are conducted in ABAQUS by using the Tian-Ma-Qu material model, the results of which are compared with the experimental findings. Good agreement is found between the experimental and numerical results, showing that the numerical simulation based on the Tian-Ma-Qu material model is able to predict the weak points and collapse process of the long-span transmission tower-line system. The failure of diagonal members at weak points constitutes the collapse-inducing factor, and the ultimate capacity and weakest segment vary with different seismic wave excitations. This research can further enrich the database for the seismic performance of long-span transmission tower-line systems.

Dynamic Thermal Rating of Overhead Transmission Lines Based on GRAPES Numerical Weather Forecast

  • Yan, Hongbo;Wang, Yanling;Zhou, Xiaofeng;Liang, Likai;Yin, Zhijun;Wang, Wei
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.724-736
    • /
    • 2019
  • Dynamic thermal rating technology can effectively improve the thermal load capacity of transmission lines. However, its availability is limited by the quantity and high cost of the hardware facilities. This paper proposes a new dynamic thermal rating technology based on global/regional assimilation and prediction system (GRAPES) and geographic information system (GIS). The paper will also explore the method of obtaining any point meteorological data along the transmission line by using GRAPES and GIS, and provide the strategy of extracting and decoding meteorological data. In this paper, the accuracy of numerical weather prediction was verified from the perspective of time and space. Also, the 750-kV transmission line in Shaanxi Province is considered as an example to analyze. The results of the study indicate that dynamic thermal rating based on GRAPES and GIS can fully excavate the line power potential without additional cost on hardware, which saves a lot of investment.

Reliability Differentiated Transmission Pricing (계통 신뢰도를 고려한 송전요율산정 방안)

  • Lee, Won-Goo;Kim, Bal-Ho;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1256-1258
    • /
    • 1999
  • Electric industry has been the object of major reforms in many countries. These reforms are aimed at attaining efficiency through competition. Thus network companies do not charge transmission cost for line user the same as method at past. This paper presents a transmission cost allocation through reliability differentiated transmission pricing in competitive electric industry. The proposed method considers only the line capacity affecting the reliability of transmission pricing under normal state and contingency state.

  • PDF