• Title/Summary/Keyword: Transmission Error(T.E.)

Search Result 22, Processing Time 0.024 seconds

A Research for the Development of the Transmission Error Measuring System and Transmission Error Specification for the Gear Noise Quality (기어 소음 품질 안정화를 위한 전달오차 측정 시스템 개발 및 전달오차 스펙 개발에 대한 연구)

  • Lee, Sang Hwa;Lee, Hyun Ku;Kang, Seok Chan;Kim, Si Yoong;Yoo, Dong Kyu;Won, Kwang Min;Chae, Geum Muk;Lee, Tae Hwi
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.6
    • /
    • pp.470-475
    • /
    • 2014
  • In the past, transmission error(T.E.) has been identified as one of the main sources of gear whine noise, which cause serious passengers irritation at high frequency. In this study, to identify the correlation of the T.E. and gear whine noise, a T.E. measuring system was developed. By comparing the T.E. and gear whine noise level, T.E. target value which can represent the gear noise was proposed. The conclusions are followed: (I) It is possible to measure T.E. of the gear pairs (II) Similar trends are observed between T.E. and gear whine noise. (III) By observing the T.E. pattern, presence of sideband noise can be predicted. (IV) Proposed T.E. target value can be adopted to the gear manufacturing for gear noise quality management.

Study on the Transmission Error Prediction for a Spur Gear Pair (스퍼기어의 전달오차에 관한 연구)

  • Zhang, Qi;Zhang, Jing;Zhu, Zhong Gang;Wang, Zhen Rong;Xu, Zhe-zhu;Lyu, Sung Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.2
    • /
    • pp.109-114
    • /
    • 2016
  • Nowadays, lower gear vibration and noise are necessary for drivers in automotive gearbox, which means that transmission gearbox should be optimized to avoid noise annoyance and fatigue before quantity production. Transmission error (T.E.) is the excitation factor that affects the noise level known as gear whine, and is also the dominant source of noise in the gear transmission system. In this paper, the research background, the definition of T.E. and gear micro-modification were firstly presented, and then different transmission errors of loaded torques for the spur gear pair were studied and compared by a commercial software. It was determined that the optimum gear micro-modification could be applied to optimize the transmission error of the loaded gear pair. In the future, a transmission test rig which is introduced in this paper is about to be used to study the T.E. after gear micro-geometry modification. And finally, the optimized modification can be verified by B&K testing equipment in the semi-anechoic room later.

Development of a Transmission Error Measurement System and Its Adaptation to a Manufacturing Line (기어 전달오차 측정 시스템의 개발 및 라인 적용에 관한 연구)

  • Lee, Hyun Ku;Lee, Sang Hwa;Ku, Han Il;Yoo, Dong Kyu;Won, Kwang Min;Lee, Tae Hwi
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.4
    • /
    • pp.420-427
    • /
    • 2016
  • Diverse research on gearing systems have been made to resolve gear NVH problems for many decades, and transmission error (T.E.) has been identified as one of the main sources generating gear noises. While gear profiles and amounts of tooth modifications have influences on gear noise in the design aspect, it is found that bad manufacturing conditions such as burrs, bumps and damage, which result in improper gear operating conditions, produce gear noise with respect to manufacturing process. In this paper, T.E. measurement system was introduced to examine the gears damaged or improperly manufactured, while they are assembled, by comparing T.E. values and various gear conditions with theoretical ones. This T.E. measurement system, following grinding machining process, has been installed in a manufacturing line in 2014, and it results that the transmission rework to resolve manufacturing problems is not needed at the end of line.

A Study on Optimization of Tooth Micro-geometry for a Helical Gear Pair (헬리컬 기어의 치형최적화에 관한 연구)

  • Zhang, Qi;Kang, Jae-Hwa;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.70-75
    • /
    • 2011
  • Nowadays, modern gearboxes are characterized by high torque load demands, low running noise and compact design. Also durability of gearbox is specially a major issue for the industry. For the gearbox which used in wind turbine, gear transmission error(T.E.) is the excitation that leads the tonal noise known as gear whine, and radiated gear whine is also the dominant source of noise in the whole gearbox. In this paper, tooth modification for the high speed stage is used to compensate for the deformation of the teeth due to load and to ensure a proper meshing to achieve an optimized tooth contact pattern. The gearbox is firstly modeled in Romax software, and then the various combination analysis of the tooth modification is presented by using Windows LDP software, and the prediction of transmission error under the loaded torque for the helical gear pair is investigated, the transmission error, contact stress, root stress and load distribution are also calculated and compared before and after tooth modification under one torque condition. The simulation result shows that the transmission error and stress under the loads can be minimized by the appropriate tooth modification.

Tooth Modification for Spur Gear for Articulated Hauler's Final Drive (트럭 최종감속기 평기어의 치형최적화에 관한 연구)

  • Oh, Sew-Oong;Zhang, Qi;Lee, In-Bum;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.42-47
    • /
    • 2012
  • Construction equipment is heavily loaded during normal operation. In recent years, there is a trend that lower gear noise levels are demanded for drivers to avoid annoyance and fatigue during operation. For articulated hauler's final drive, meshing transmission error(T.E.) is the excitation that leads the tonal noise known as gear whine, and radiated gear whine is also the dominant source of noise in the whole gearbox. This paper presents a method for the analysis of the tooth profile modification, and the prediction of transmission error under the loaded torques for the spur gear pair of the articulated hauler's final drive. And the transmission error, transmission error harmonics and contact stress are also calculated and compared before and after tooth modification under one torque. The simulation result shows that the transmission error and contact stress under the loads can be minimized by the appropriate tooth profile modification.

A Study on the Optimism Design of the Gear Tooth Profile (수정에 의한 기어 최적설계에 관한 연구)

  • Hwang G.S.;Lyu S.K.;Ahn I.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.97-98
    • /
    • 2006
  • This study deals with the Transmission Error of gear tooth profile by modifying a Profile and lead of a surface of Tooth. First, we experimentally confirmed that the Transmission Error is a synthesis of the sliding Velocity between both gears. Since various types of Transmission errors appear in the experiments, we introduced definition of Transmission Error and The Optimism Design by modifying a surface parameters The test stand's performance is then evaluated through a series of multiple torque transmission error tests. Comparisons are made between data recorded before and after the test stand's redesign, and subsequently repeatability studies are performed to verify the veracity of the measured data. Finally, the experimental results are compared to the analytical predictions of two different gear analysis programs.

  • PDF

A Study on the Optimism Design of the Gear Tooth Profile (치형수정에 의한 기어의 최적설계에 관한 연구)

  • Son, Yu-Sun;Hwang, Gue-Sec;Tak, Seong-Hun;Lyu, Sung-Ki
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.712-717
    • /
    • 2007
  • This study deals with the TE(Transmission Error) of gear tooth profile by modifying a profile and lead of a surface of tooth. First, we experimentally confirmed that the TE is a synthesis of the sliding velocity between both gears. Since various types of TE appear in the experiments, we introduced definition of transmission error and the optimism design by modifying a surface parameters. The test stand's performance is then evaluated through a series of multiple torque transmission error tests. Comparisons are made between data recorded before and after the test stand's redesign, and subsequently repeatability studies are performed to verify the veracity of the measured data. Finally, the experimental results are compared to the analytical predictions of two different gear analysis programs.

  • PDF

A Study on the Transmission Error of the Gear on Contact Load (접촉하중에 따른 기어의 트랜스미션 에러에 관한 연구)

  • Tak, Sung-Hoon;Hwang, Gue-Sec;Son, Yu-Sun;Bae, Hyo-Je;Lyu, Sung-Ki
    • Tribology and Lubricants
    • /
    • v.23 no.3
    • /
    • pp.117-122
    • /
    • 2007
  • This study deals with the TE (Transmission Error) of gear tooth by modifying a profile and lead of a surface of tooth. First, we experimentally confirmed that the TE is a synthesis of the sliding velocity between both gears. Since various types of TE appear in the experiments, we introduced definition of transmission error and the optimism design by modifying a surface parameters. The test stand's performance is then evaluated through a series of multiple torque transmission error tests. Comparisons are made between data recorded before and after the test stand's redesign, and subsequently repeatability studies are performed to verify the veracity of the measured data. Finally, the experimental results are compared to the analytical predictions of two different gear analysis programs.

Analytical Prediction of Transmission Error and Load Distribution for a Plugin HEV (플러그인 HEV용 변속기전달오차와 하중분포에 관한 연구)

  • Zhang, Qi;Kang, Jae-Hwa;Yun, Gi-Baek;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.116-121
    • /
    • 2012
  • In recent years, world is faced with a transportation energy dilemma, and the transportation is dependent on a single fuel - petroleum. However, Hybrid Electric Vehicle(HEV) technology holds more advantages to reduce the demand for petroleum in the transportation by efficiency improvements of petroleum consumption. Therefore, there is a trend that lower gear noise levels are demanded in HEV for drivers to avoid annoyance and fatigue during operation. And meshing transmission error(T.E.) is the excitation that leads to the tonal noise known as gear whine, and radiated gear whine is also the dominant source of noise in the whole gearbox. This paper presents a method for the analysis of gear tooth profile and lead modification, and the predictions of transmission error and load distribution are shown under one loaded torque for the 1st gear pair of HEV gearbox. The test is also obtained before tooth micro-modification under the torque. At last, the appropriate tooth modification is used to minimize the transmission error and load distribution under the loaded torque. It is a good approach which the simulated result is used to improve the design in order to minimize the radiation gear whine noise.

A Study on the Low-Priority Symbol Transmission in AT-DMB System

  • Erke, Li;Kim, Hanjong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.755-757
    • /
    • 2009
  • Since the research of advanced terrestrial digital multimedia broadcasting system is still in progress, and in our previous paper, in which we introduced how to combine one conventional transmitted symbol with two additional bits to form a new symbol transmission, the bit error performance of LP bits is not realizable, because even we implemented the turbo code to protect the LP bits transmission, to obtain a certain good bit error probability, the value of $E_b/N_0$ cost highly. In this paper, we modified the composition of low-priority symbol and high-priority symbol, and through the system presented in previous paper we get a better simulation result of the LP symbol transmission.

  • PDF