• Title/Summary/Keyword: Transmission Electron Microscopy

Search Result 2,328, Processing Time 0.031 seconds

Electron Microscopic Study of Structures and Storage Reserves in Capsicum annuum Seeds (고추종자의 성숙에 따른 구조 및 저장물질의 전자현미경적 연구)

  • Kim, Se-Kyu;Kim, Eun-Soo;Kim, Woo-Kap;Lee, Kwang-Woong
    • Applied Microscopy
    • /
    • v.25 no.4
    • /
    • pp.71-82
    • /
    • 1995
  • The ultrastructure and storage reserves of the Capsicum annuum seeds were studied in order to identify structure and to localize storage components in the endosperm using light microscopy, scanning and transmission electron microscopy. The seed coat was composed of one cell layer which contained a large number of lipid bodies, while most of the endosperm cells did not showed many lipid bodies. During seed maturation, the endosperm cells were continuously degenerated by the autophagy. Various types of plastids were also distinguished in the endosperm cells. They contained starch grains surrounded by electron-dense tiny particles, plastoglobuli, and vasicular bodies.

  • PDF

A Glance of Electron Tomography through 4th International Congress on Electron Tomography (International Congress on Electron Tomography에 대한 간략한 이해와 현황)

  • Rhyu, Im-Joo;Park, Seung-Nam
    • Applied Microscopy
    • /
    • v.38 no.3
    • /
    • pp.275-278
    • /
    • 2008
  • Electron tomography (ET) is an electron microscopic technique for obtaining a 3-D image from any electron microscopy specimen and its application in biomedical science has been increased thanks to development of electron microscopy and related technologies during the last decade. There are few researches on ET in Korea during this period. Although the importance of ET has been recognized recently by many researchers, initial approach to electron tomographic research is not easy for beginners. The 4th International Congress on Electron Tomography (4 ICET) was held on Nov $5{\sim}8$, 2006, at San Diego. The program dealt instrumentation, reconstruction algorithm, visualization/quantitative analysis and electron tomographic presentation of biological specimen and nano particles. 1 have summarized oral presentations and analyzed the posters presented on the meeting. Cryo-electron microscopic system was popular system for ET and followed conventional transmission electron microscopic system. Cultured cell line and tissue were most popular specimens analyzed and microorganisms including bacteria and virus also constituted important specimens. This analysis provides a current state of art in ET research and a guide line for practical application of ET and further research strategies.

Transmission Electron Microscopy Study of Stacking Fault Pyramids Formed in Multiple Oxygen Implanted Silicon-on-Insulator Material

  • Park, Ju-Cheol;Lee, June-Dong;Krause, Steve J.
    • Applied Microscopy
    • /
    • v.42 no.3
    • /
    • pp.151-157
    • /
    • 2012
  • The microstructure of various shapes of stacking fault pyramids (SFPs) formed in multiple implant/anneal Separation by Implanted Oxygen (SIMOX) material were investigated by plan-view and cross-sectional transmission electron microscopy. In the multiple implant/anneal SIMOX, the defects in the top silicon layer are confined at the interface of the buried oxide layer at a density of ${\sim}10^6\;cm^{-2}$. The dominant defects are perfect and imperfect SFPs. The perfect SFPs were formed by the expansion and interaction of four dissociated dislocations on the {111} pyramidal planes. The imperfect SFPs show various shapes of SFPs, including I-, L-, and Y-shapes. The shape of imperfect SFPs may depend on the number of dissociated dislocations bounded to the top of the pyramid and the interaction of Shockley partial dislocations at each edge of {111} pyramidal planes.

Transmission Electron Microscopy Specimen Preparation of Delicate Materials Using Tripod Polisher

  • Cha, Hyun-Woo;Kang, Min-Chul;Shin, Keesam;Yang, Cheol-Woong
    • Applied Microscopy
    • /
    • v.46 no.2
    • /
    • pp.110-115
    • /
    • 2016
  • Transmission electron microscopy (TEM) is a powerful tool for analyzing a broad range of materials and provides localized information about the microstructure. However, the analysis results are strongly influenced by the quality of the thin foil specimen. Sample preparation for TEM analysis requires considerable skill, especially when the area of interest is small or the material of interest is difficult to thin because of its high hardness and its mechanical instability when thinned. This article selectively reviews recent advances in TEM sample preparation techniques using a tripod polisher. In particular, it introduces two typical types (fl at type and wedge type) of TEM sample preparation and the benefits and drawbacks of each method; finally, a method of making better samples for TEM analysis is suggested.

TEM sample preparation of microsized LiMn2O4 powder using an ion slicer

  • Jung Sik Park;Yoon‑Jung Kang;Sun Eui Choi;Yong Nam Jo
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.19.1-19.7
    • /
    • 2021
  • The main purpose of this paper is the preparation of transmission electron microscopy (TEM) samples from the microsized powders of lithium-ion secondary batteries. To avoid artefacts during TEM sample preparation, the use of ion slicer milling for thinning and maintaining the intrinsic structure is described. Argon-ion milling techniques have been widely examined to make optimal specimens, thereby making TEM analysis more reliable. In the past few years, the correction of spherical aberration (Cs) in scanning transmission electron microscopy (STEM) has been developing rapidly, which results in direct observation at an atomic level resolution not only at a high acceleration voltage but also at a deaccelerated voltage. In particular, low-kV application has markedly increased, which requires a sufficiently transparent specimen without structural distortion during the sample preparation process. In this study, sample preparation for high-resolution STEM observation is accomplished, and investigations on the crystal integrity are carried out by Cs-corrected STEM.