• 제목/요약/키워드: Transmission Allocation

검색결과 556건 처리시간 0.035초

Implementation of efficient multi-view system through function distribution in digital multi-channel broadcasting service

  • Kwon, Myung-Kyu
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권6호
    • /
    • pp.17-24
    • /
    • 2017
  • In recent digital broadcasting, up to 250 channels are multiplexed and transmitted. The channel transmission is made in the form of MPEG-2 Transport Stream (TS) and transmits one channel (Video, Audio). In order to check if many broadcast channels are transmitted normally, in multi-channel multi-view system, ability of real-time monitoring is required. In order to monitor efficient multi-channel, a distributed system in which functions and load are distributed should be implemented. In the past, we used an inefficient system that gave all of the functionality to a piece of hardware, which limited the channel acceptance and required a lot of resources. In this paper, we implemented a distributed multi-view system which can reduce resources and monitor them economically through efficient function and load balancing. It is able to implement efficient system by taking charge of decoding, resizing and encoding function in specific server and viewer function in separate server. Through this system, the system was stabilized, the investment cost was reduced by 19.7%, and the wall monitor area was reduced by 52.6%. Experimental results show that efficient real-time channel monitoring for multi-channel digital broadcasting is possible.

UMMAC: A Multi-Channel MAC Protocol for Underwater Acoustic Networks

  • Su, Yishan;Jin, Zhigang
    • Journal of Communications and Networks
    • /
    • 제18권1호
    • /
    • pp.75-83
    • /
    • 2016
  • In this paper, we propose a multi-channel medium access control (MAC) protocol, named underwater multi-channel MAC protocol (UMMAC), for underwater acoustic networks (UANs). UMMAC is a split phase and reservation based multi-channel MAC protocol which enables hosts to utilize multiple channels via a channel allocation and power control algorithm (CAPC). In UMMAC, channel information of neighboring nodes is gathered via exchange of control packets. With such information, UMMAC allows for as many parallel transmissions as possible while avoiding using extra time slot for channel negotiation. By running CAPC algorithm, which aims at maximizing the network's capacity, users can allocate their transmission power and channels in a distributed way. The advantages of the proposed protocol are threefold: 1) Only one transceiver is needed for each node; 2) based on CAPC, hosts are coordinated to negotiate the channels and control power in a distributed way; 3) comparing with existing RTS/CTS MAC protocols, UMMAC do not introduce new overhead for channel negotiation. Simulation results show that UMMAC outperforms Slotted floor acquisition multiple access (FAMA) and multi-channel MAC (MMAC) in terms of network goodput (50% and 17% respectively in a certain scenario). Furthermore, UMMAC can lower the end-to-end delay and achieves a lower energy consumption compared to Slotted FAMA and MMAC.

Distributed Coordination Protocol for Ad Hoc Cognitive Radio Networks

  • Kim, Mi-Ryeong;Yoo, Sang-Jo
    • Journal of Communications and Networks
    • /
    • 제14권1호
    • /
    • pp.51-62
    • /
    • 2012
  • The exponential growth in wireless services has resulted in an overly crowded spectrum. The current state of spectrum allocation indicates that most usable frequencies have already been occupied. This makes one pessimistic about the feasibility of integrating emerging wireless services such as large-scale sensor networks into the existing communication infrastructure. Cognitive radio is an emerging dynamic spectrum access technology that can be used for flexibly and efficiently achieving open spectrum sharing. Cognitive radio is an intelligent wireless communication system that is aware of its radio environment and that is capable of adapting its operation to statistical variations of the radio frequency. In ad hoc cognitive radio networks, a common control channel (CCC) is usually used for supporting transmission coordination and spectrum-related information exchange. Determining a CCC in distributed networks is a challenging research issue because the spectrum availability at each ad hoc node is quite different and dynamic due to the interference between and coexistence of primary users. In this paper, we propose a novel CCC selection protocol that is implemented in a distributed way according to the appearance patterns of primary systems and connectivity among nodes. The proposed protocol minimizes the possibility of CCC disruption by primary user activities and maximizes node connectivity when the control channel is set up. It also facilitates adaptive recovery of the control channel when the primary user is detected on that channel.

CAN기반 실시간 시스템을 위한 확장된 EDS 알고리즘 개발 (Development of an Extended EDS Algorithm for CAN-based Real-Time System)

  • 이병훈;김대원;김홍렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2369-2373
    • /
    • 2001
  • Usually the static scheduling algorithms such as DMS (Deadline Monotonic Scheduling) or RMS(Rate Monotonic Scheduling) are used for CAN scheduling due to its ease with implementation. However, due to their inherently low utilization of network media, some dynamic scheduling approaches have been studied to enhance the utilization. In case of dynamic scheduling algorithms, two considerations are needed. The one is a priority inversion due to rough deadline encoding into stricted arbitration fields of CAN. The other is an arbitration delay due to the non-preemptive feature of CAN. In this paper, an extended algorithm is proposed from an existing EDS(Earliest Deadline Scheduling) approach of CAN scheduling algorithm haying a solution to the priority inversion. In the proposed algorithm, the available bandwidth of network media can be checked dynamically by all nodes. Through the algorithm, arbitration delay causing the miss of their deadline can be avoided in advance. Also non real-time messages can be processed with their bandwidth allocation. The proposed algorithm can achieve full network utilization and enhance aperiodic responsiveness, still guaranteeing the transmission of periodic messages.

  • PDF

초저전송율 동영상 부호기를 위한 퍼지 양자화 및 율 제어에 관한 연구 (Fuzzy Quantization and Rate Control for Very Low Bit­rate Video Coder)

  • 양근호
    • 한국정보통신학회논문지
    • /
    • 제7권8호
    • /
    • pp.1684-1690
    • /
    • 2003
  • 본 논문에서는 H.263 부호기에서 적정 화질과 일정한 전송율을 유지하는 양자화 변수 추정을 위한 퍼지 제어기를 제안하였다. 퍼지화 방법으로는 Mamdani 방법을 이용하며, 역퍼지화는 무게중심법을 이용하였다. 움직임 벡터에 따른 시간적 특성을 추정할 때 공간영역에서 분산과 엔트로피는 시각적 특성과 상관관계가 있다. 따라서 퍼지 입력변수로 영상의 분산값, 엔트로피 및 움직임 벡터를 이용하였다. 퍼지 소속함수를 유도하고, 시각적 특성에 적합한 퍼지감도를 결정하였으며, FAM 뱅크를 설계하였다. 실제 동영상 압축에 퍼지 규칙을 적용하였으며, 퍼지 양자화를 이용하여 효율적인 율제어와 최적의 비트할당 및 주관적 화질 특성이 유지되는 결과를 얻었다.

Multibeam Satellite Frequency/Time Duality Study and Capacity Optimization

  • Lei, Jiang;Vazquez-Castro, Maria Angeles
    • Journal of Communications and Networks
    • /
    • 제13권5호
    • /
    • pp.472-480
    • /
    • 2011
  • In this paper, we investigate two new candidate transmission schemes, non-orthogonal frequency reuse (NOFR) and beam-hopping (BH). They operate in different domains (frequency and time/space, respectively), and we want to know which domain shows overall best performance. We propose a novel formulation of the signal-to-interference plus noise ratio (SINR) which allows us to prove the frequency/time duality of these schemes. Further, we propose two novel capacity optimization approaches assuming per-beam SINR constraints in order to use the satellite resources (e.g., power and bandwidth) more efficiently. Moreover, we develop a general methodology to include technological constraints due to realistic implementations, and obtain the main factors that prevent the two technologies dual of each other in practice, and formulate the technological gap between them. The Shannon capacity (upper bound) and current state-of-the-art coding and modulations are analyzed in order to quantify the gap and to evaluate the performance of the two candidate schemes. Simulation results show significant improvements in terms of power gain, spectral efficiency and traffic matching ratio when comparing with conventional systems, which are designed based on uniform bandwidth and power allocation. The results also show that BH system turns out to show a less complex design and performs better than NOFR system specially for non-real time services.

PID 제어기를 이용한 영상 품질 변화 최소화 방법 (Video Quality Variation Minimizing Method using PID Controller)

  • 박상현;강의성
    • 한국정보통신학회논문지
    • /
    • 제11권11호
    • /
    • pp.2009-2014
    • /
    • 2007
  • 본 논문에서는 버퍼를 이용한 가변적인 트래픽을 제어에서 영상의 품질 변화를 최소화 하는 방법을 제안한다. 제안하는 알고리즘은 반복적인 최적화 방법을 사용하지 않고 프레임 레이어에서 전송률을 제어하는 방법으로 영상 프레임간의 왜곡의 변화를 최소화한다. 그리고 버퍼의 정보를 비트율에 효과적으로 반영 하기 위하여 제어 시스템에서 많이 사용되는 PID 제어를 하였다. PID 제어는 많은 계산량을 필요로 하지 않기 때문에 제안하는 알고리즘은 낮은 계산량을 필요로 하는 실시간 영상 코덱에 적당한 알고리즘이다. 제안하는 알고리즘과 기존의 알고리즘간의 비교 실험은 제안하는 알고리즘이 PSNR 성능에서 기존의 알고리즘 보다 우수함을 보여준다.

Physical Layer Security for Two-Way Relay NOMA Systems with Energy Harvesting

  • Li, Hui;Chen, Yaping;Zou, Borong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권6호
    • /
    • pp.2094-2114
    • /
    • 2022
  • Due to the wide application of fifth generation communication, wireless sensor networks have become an indispensable part in our daily life. In this paper, we analyze physical layer security for two-way relay with energy harvesting (EH), where power splitter is considered at relay. And two kinds of combined methods, i.e., selection combining (SC) and maximum ratio combining (MRC) schemes, are employed at eavesdropper. What's more, the closed-form expressions for security performance are derived. For comparison purposes, this security behaviors for orthogonal multiple access (OMA) networks are also investigated. To gain deeper insights, the end-to-end throughput and approximate derivations of secrecy outage probability (SOP) under the high signal-to-noise ratio (SNR) regime are studied. Practical Monte-Carlo simulative results verify the numerical analysis and indicate that: i) The secure performance of SC scheme is superior to MRC scheme because of being applied on eavesdropper; ii) The secure behaviors can be affected by various parameters like power allocation coefficients, transmission rate, etc; iii) In the low and medium SNR region, the security and channel capacity are higher for cooperative non-orthogonal multiple access (NOMA) systems in contrast with OMA systems; iv) The systematic throughput can be improved by changing the energy conversion efficiency and power splitting factor. The purpose of this study is to provide theoretical direction and design of secure communication.

2.4/5GHz 이중대역 RF 설계 및 구현과 성능 평가 (2.4/5GHz Dual-Band RF Design and Implementation and Performance Evaluation)

  • 정병익;석경휴
    • 한국전자통신학회논문지
    • /
    • 제18권5호
    • /
    • pp.755-760
    • /
    • 2023
  • 본 논문에서는 기존 2.4GHz 대역을 이용한 무선 AV 감시시스템의 신뢰성과 안정성을 확보하기 위해서 2.4/5GHz 이중대역을 사용하였다. 제안된 시스템은 타신호(Wifi, Bluetooth 등)로부터 간섭을 회피하기 위해 동적 채널할당 및 채널 변경기술을 지원하고, 무선 CCTV 구축시 발생되는 유지 보수 비용을 절감 시키며 기존 유선 CCTV와 연동 가능해져 CCTV를 이용한 A/V 감시시스템의 서비스 영역을 확대할 수 있다.

이상 비트율 할당과 신호왜곡 문제점을 고려한 멀티미디어 신호의 연판정 양자화 방법 (Soft-Decision Based Quantization of the Multimedia Signal Considering the Outliers in Rate-Allocation and Distortion)

  • 임종욱;노명훈;김무영
    • 한국음향학회지
    • /
    • 제29권4호
    • /
    • pp.286-293
    • /
    • 2010
  • 기존 데이터 압축 방식에는 크게 resolution-constrained quantization (RCQ) 방식과entropy-constrained quantization (ECQ) 방식이 있다. RCQ 방식은 고정 비트율 전송을 가능하게 하지만 셀 크기의 변화에 따른 이상 신호왜곡이 발생하며, ECQ 방식은 셀 크기가 고정된 대신에 이상 비트율 할당 문제가 발생한다. 본 논문에서는 기존 RCQ 방식의 대표적인 학습기법인 generalized Lloyd algorithm (GLA)을 개선한 cell-size constrained vector quantization (CCVQ) 방식을 제안한다. CCVQ 알고리즘은 셀 크기에 따라 유동적으로 패널티 척도를 주는 방식으로 기존의 RCQ와 ECQ 사이의 soft-decision을 가능하게 한다. 제안 알고리즘을 사용할 경우 기존의 GLA에 비해 약간의 평균왜곡 증가는 발생하나 이상 신호왜곡을 줄일 수 있다.