• Title/Summary/Keyword: Transition-state stabilization

검색결과 47건 처리시간 0.02초

Nucleophilic Displacement of Sulfur Center, Part Ⅵ - Halide Exchange Kinetics of Methanesulfonyl Chloride in Acetone, Acetonirile and Methanol

  • Lee, Ikchoon;Yie, Jae-Eui
    • Nuclear Engineering and Technology
    • /
    • 제6권1호
    • /
    • pp.23-26
    • /
    • 1974
  • 염화 메탄 슬포닐의 할로겐 교환반응을 무수아세톤, 아세토니트릴, 메타놀 용매중에서 행하여 반응속도상수와 활성화파라메터를 구하였다. 친핵성도는 Cl->Br>I- 순서로 감소하였으며, 용매변화에 따른 염소이온과의 반응 속도는 ($CH_3$)$_2$CO>$CH_3$CN》$CH_3$OH의 순서로 감소하였다. 실험결과를 초기상태 탈용매화의 용이함과 천이상태 용매화의 안정성으로 설명하였다.

  • PDF

The α-Effect in Nucleophilic Substitution Reactions of Y-Substituted-Phenyl Diphenylphosphinates with HOO- and OH-

  • Hong, Hyo-Jeong;Bae, Ae Ri;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권8호
    • /
    • pp.2251-2255
    • /
    • 2013
  • Second-order rate constants ($k_{HOO^-}$) for the nucleophilic substitution reactions of Y-substituted-phenyl diphenylphosphinates (4a-4i) with $HOO^-$ in $H_2O$ have been measured spectrophotometrically. The ${\alpha}$-nucleophile $HOO^-$ is 10-70 times more reactive than the reference nucleophile $OH^-$ although the former is ca. $4pK_a$ units less basic than the latter, indicating the ${\alpha}$-effect is operative. The Bronsted-type plot for the reactions of 4a-4i with $HOO^-$ is linear with ${\beta}_{lg}=-0.51$, a typical ${\beta}_{lg}$ value for reactions which were reported to proceed through a concerted mechanism. The Yukawa-Tsuno plot is also linear with ${\rho}=1.40$ and r = 0.47, indicating that a negative charge develops partially on the O atom of the leaving group, which can be delocalized to the substituent Y through resonance interactions. Thus, the reactions have been proposed to proceed through a concerted mechanism. The magnitude of the ${\alpha}$-effect (i.e., the $k_{HOO^-}/k_{HO^-}$ ratio) decreases linearly as the leaving-group basicity increases. It has been concluded that solvation effect is not solely responsible for the ${\alpha}$-effect found in this study but the transition-state stabilization through an intramolecular H-bonding interaction is also responsible for the ${\alpha}$-effect.

The α-Effect in SNAr Reaction of 1-Fluoro-2,4-dinitrobenzene with Hydrazine: Ground-State Destabilization versus Transition-State Stabilization

  • Cho, Hyo-Jin;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2371-2374
    • /
    • 2014
  • A kinetic study is reported on SNAr reaction of 1-fluoro-2,4-dinitrobenzene with a series of primary amines including hydrazine in $H_2O$ at $25.0^{\circ}C$. The plots of $k_{obsd}$ vs. [amine] are linear and pass through the origin, indicating that general-base catalysis by a second amine molecule is absent. The Br${\o}$nsted-type plot exhibits an excellent linear correlation with ${\beta}_{nuc}$ = 0.46 when hydrazine is excluded from the correlation. The reaction has been suggested to proceed through a stepwise mechanism, in which expulsion of the leaving group occurs after the rate-determining step (RDS). Hydrazine is ca. 10 times more reactive than similarly basic glycylglycine (i.e., the ${\alpha}$-effect). A five-membered cyclic intermediate has been suggested for the reaction with hydrazine, in which intramolecular H-bonding interactions would facilitate expulsion of the leaving group. However, the enhanced leaving-group ability is not responsible for the ${\alpha}$-effect shown by hydrazine because expulsion of the leaving group occurs after RDS. Destabilization of the ground-state of hydrazine through the electronic repulsion between the nonbonding electron pairs is responsible for the ${\alpha}$-effect found in the current $S_NAr$ reaction.

2,4-이니트로할로벤젠과 치환된 아닐린의 반응속도에 대한 용매효과 (제2보) (Influence of Solvents on Rates of Reactions of 2,4-Dinitro Substituted Halobenzenes with Substituted Anilines (Ⅱ))

  • 이해황;이익춘
    • 대한화학회지
    • /
    • 제22권1호
    • /
    • pp.7-11
    • /
    • 1978
  • 이니트로요오도벤젠과 파라치환체 아닐린과의 반응을 아세토니트릴-메탄올 혼합용매에서 연구하였다. 행해진 반응에서의 반응속도 상수는 메탄올 용매하에서 아세토니트릴 용매에 비해 큰 값을 보였다. 실험 결과로 부터 중간체 생성 과정이 반응속도 결정 단계임을 알았으며 용매효과는 메탄올의 산소 원자와 아닐린의 수소원자 사이의 수소결합에 의한 천이상태 안정화로 설명하였다.

  • PDF

MO 이론에 의한 반응성의 결정 (제17보). 페놀계 산화방지제에 관한 이론적 연구 (Determination of Reactivities by MO (ⅩⅦ). Theoretical Studies on Phenolic Antioxidants)

  • 이익춘;전용구
    • 대한화학회지
    • /
    • 제24권5호
    • /
    • pp.337-341
    • /
    • 1980
  • 페놀계 산화방지제들의 라디칼 생성반응을 분자궤도론적으로 고찰하였다. 결과로 페놀계 산화방지제는 전자공여성인 알킬기의 치환으로 phenoxy 라디칼 생성이 용이해지며, 따라서 산화방지 능력이 증가함을 알았다. 이것은 electrophilic 라디칼의 작용으로 형성되는 양이온을 안정화시켜 주기 때문임을 밝혔다

  • PDF

Crystal Structure of $\Delta$-3-Ketosteroid Isomerase From Pseudomonas testosteroni in Complex with Equilenin Settles the Correct Hydrogen Bonding Scheme for Transition-State Stabilization

  • Cho, Hyun-Soo;Ha, Nam-Chul;Park, Gildon
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1999년도 학술발표회 진행표 및 논문초록
    • /
    • pp.36-36
    • /
    • 1999
  • Bacterial Δ-3-ketosteroid isomerase (KSI) catalyzes the conversion of Δ-to Δ-3-ketosteroids via enolate formation, which is also found in the synthesis of all steroid hormones in mammals. In Pseudomonas testosteroni, KSI Asp38 (pKa ~ 4.7) was identified as the general base which abstracts the steroid C4b-H (pKa ~ 12.7) to form the dienolate intermediate.(omitted)

  • PDF

Fluorescence Enhancement of Ethidium Bromide by DNA Bases and Nucleosides

  • Pyun, Chong-Hong;Park, Su-Moon
    • Bulletin of the Korean Chemical Society
    • /
    • 제10권2호
    • /
    • pp.142-147
    • /
    • 1989
  • Fluorescence enhancements of ethidium bromide (EB) by solution species of low molecular weights such as DNA base molecules and nucleosides in water are reported. The degree of enhancements was determined by intensity as well as lifetime measurements for EB fluorescence. Experiments including solvent effects on absorbance and fluorescence spectra of EB, effects of protonation on the EB absorbance spectrum, and determination of equilibrium constants for EB-DNA bases have been performed to help explain the fluorescence enhancement. The results suggest that the excited state stabilization in the hydrophobic environment, the loss of torsional/vibrational energy of amino groups, and the change in the electronic transition characteristics are all responsible for the fluorescence enhancement.

Ab initio Studies on the Hetero Diels-Alder Cycloaddition

  • 이본수;김찬경;최정욱;이익준
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권9호
    • /
    • pp.849-853
    • /
    • 1996
  • Hetero Dieis-Alder reactions containing phosphorus atom at various positions of diene and dienophile as well as standard Dieis-Alder reaction between ethylene and cis-l,3-butadiene have been studied using ab initio method. Activation energy showed a good linear relationship with the FMO energy gap between diene and dienophile, which can be normally used to explain Dieis-Alder reactivity. Since π-bond cleavage and σ-bonds formation occur concertedly at the TS, geometrical distortion of diene and dienophile from the reactant to the transition state is the source of barrier. Based on the linear correlations between activation barrier and deformation energy, and between deformation energy and π-bond order change, it was concluded that the activation barrier arises mainly from the breakage of π-bonds in diene and dienophile. Stabilization due to favorable orbital interaction is relatively small. The geometrical distortions raise MO levels of the TS, which is the origin of the activation energy. The lower barrier for the reactions of phosphorus containing dienophile (reactions C, D, and E) can be explained by the electronegativity effect of the phosphorus atom.

Theoretical Studies on Phentl Group Migration of Protonated 1,2-Diphenyl Hydrazines

  • 김찬경;이인영;김장근;이익춘
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권5호
    • /
    • pp.477-482
    • /
    • 2000
  • Phenyl group migration within protonated 1,2-diphenyl hydrazines has been studied theoretically using the semi-empirical AM1 method. This reaction proceeds through a 3-membered cyclic transition state and requires high activation energy. In the reactant, there was no resonance stabilization for the moving Z-ring, however, hammett $p_Z^+$ values are large due to the direct involvement of the Z-ring inthe reaction, and the development of a negative charge on the reaction center gives them a posifive value. In the case of the non-moving ring, $p_Y^+$ values are small and negative owing to the smaller positive charge increase in the reaction center. The cross-interaction constant, $p_YZ^+$, was obtained from the activation enthalpies, using the multipe linear regression methdo, and the interaction between two substituents, Y and Z, is examined.

Free Radical-mediated Ring Expansion Reactions:Endocyclic Cleavage of Cyclopropylcarbinyl Radicals

  • 이필호;이병철;이구연;이창희;장숙복
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권6호
    • /
    • pp.595-603
    • /
    • 2000
  • Ring expansion reactions via endocyclic cleavage of cyclopropylcarbinyl radicals derived from the reaction of [1-benzyloxycarbonylbicyclo[n. 1.O]alk-(n+l)-yl] -1-imidazolethiocarboxylates with tributyltin hydride/AIBN proceeded to produce 3-cycloalkenecarboxylates in good yields. Benzyl (5'-phenoxypentyl) -3-cyclohepten-1 -carboxylate was obtained in 33% yield from the reaction of benzyl 5-methylenebicyclo [4. 1.0]- 1-carboxylates with 4-phenoxybutyl iodide under radical conditions. Selective cleavage of endocyclic bond in cyclopropane to the cyclohexane, results from stabilization of the resultant radical by the carbonyl groups, such as the benzyloxycarbonyl group, which lower the transition state energy for the final cyclopropane cleavage in the ring expansion.