DOI QR코드

DOI QR Code

The α-Effect in Nucleophilic Substitution Reactions of Y-Substituted-Phenyl Diphenylphosphinates with HOO- and OH-

  • Hong, Hyo-Jeong (Department of Chemistry, Duksung Women's University) ;
  • Bae, Ae Ri (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
  • Received : 2013.04.17
  • Accepted : 2013.05.01
  • Published : 2013.08.20

Abstract

Second-order rate constants ($k_{HOO^-}$) for the nucleophilic substitution reactions of Y-substituted-phenyl diphenylphosphinates (4a-4i) with $HOO^-$ in $H_2O$ have been measured spectrophotometrically. The ${\alpha}$-nucleophile $HOO^-$ is 10-70 times more reactive than the reference nucleophile $OH^-$ although the former is ca. $4pK_a$ units less basic than the latter, indicating the ${\alpha}$-effect is operative. The Bronsted-type plot for the reactions of 4a-4i with $HOO^-$ is linear with ${\beta}_{lg}=-0.51$, a typical ${\beta}_{lg}$ value for reactions which were reported to proceed through a concerted mechanism. The Yukawa-Tsuno plot is also linear with ${\rho}=1.40$ and r = 0.47, indicating that a negative charge develops partially on the O atom of the leaving group, which can be delocalized to the substituent Y through resonance interactions. Thus, the reactions have been proposed to proceed through a concerted mechanism. The magnitude of the ${\alpha}$-effect (i.e., the $k_{HOO^-}/k_{HO^-}$ ratio) decreases linearly as the leaving-group basicity increases. It has been concluded that solvation effect is not solely responsible for the ${\alpha}$-effect found in this study but the transition-state stabilization through an intramolecular H-bonding interaction is also responsible for the ${\alpha}$-effect.

Keywords

References

  1. Edward, J. O.; Pearson, R. G. J. Am. Chem. Soc. 1962, 84, 16-24. https://doi.org/10.1021/ja00860a005
  2. Buncel, E.; Um, I. H.; Terrier, F. The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids; Wiley Press: West Sussex, 2009; Chapter 17.
  3. Buncel, E.; Um, I. H. Tetrahedron 2004, 60, 7801-7825. https://doi.org/10.1016/j.tet.2004.05.006
  4. Hoz, S.; Buncel, E. Israel J. Chem. 1985, 26, 313-319. https://doi.org/10.1002/ijch.198500113
  5. Grekov, A. P.; Beselov, V. Ya. Russ. Chem. Rev. 1978, 47, 631-648. https://doi.org/10.1070/RC1978v047n07ABEH002243
  6. Fina, N. J.; Edwards, J. O. Int. J. Chem. Kinet. 1973, 5, 1-26. https://doi.org/10.1002/kin.550050102
  7. Villano, S. M.; Eyet, N.; Lineberger, W. C.; Bierbaum, V. M. J. Am. Chem. Soc. 2009, 131, 8227-8233. https://doi.org/10.1021/ja9012084
  8. Depuy, C. H.; Della, E. W.; Filley, J.; Grabowski, J. J.; Bierbaum, V. M. J. Am. Chem. Soc. 1983, 105, 2481-2482. https://doi.org/10.1021/ja00346a066
  9. Wolfe, S.; Mitchell, D. J.; Schlegel, H. B.; Minot, C.; Eisenstein, O. Tetrahedron Lett. 1982, 23, 615-618. https://doi.org/10.1016/S0040-4039(00)86904-X
  10. Ritchie, J. F. J. Am. Chem. Soc. 1983, 105, 7313-7318. https://doi.org/10.1021/ja00363a018
  11. Wei, X. G.; Sun, X. M.; Wu, W. P.; Ren, Y.; Wong, N. B.; Li, W. K. J. Org. Chem. 2010, 75, 4212-4217. https://doi.org/10.1021/jo1006575
  12. Ren, Y.; Yamataka, H. J. Comput. Chem. 2009, 30, 358-365. https://doi.org/10.1002/jcc.21061
  13. Ren, Y.; Yamataka, H. J. Org. Chem. 2007, 72, 5660-5667. https://doi.org/10.1021/jo070650m
  14. Ren, Y.; Yamataka, H. Chem. Eur. J. 2007, 13, 677-682. https://doi.org/10.1002/chem.200600203
  15. Ren, Y.; Yamataka, H. Org. Lett. 2006, 8, 119-121. https://doi.org/10.1021/ol0526930
  16. McAnoy, A. M.; Paine, M. R.; Blanksby, S. J. Org. Biomol. Chem. 2008, 6, 2316-2326. https://doi.org/10.1039/b803734e
  17. Patterson, E. V.; Fountain, K. R. J. Org. Chem. 2006, 71, 8121- 8125. https://doi.org/10.1021/jo061275l
  18. Buncel, E.; Chuaqui, C.; Wilson, H. J. Org. Chem. 1980, 45, 3621-3626. https://doi.org/10.1021/jo01306a016
  19. Hoz, S.; Buncel, E. Tetrahedron Lett. 1984, 25, 3411-3414. https://doi.org/10.1016/S0040-4039(01)91033-0
  20. Buncel, E.; Hoz, S. Tetrahedron Lett. 1983, 24, 4777-4780. https://doi.org/10.1016/S0040-4039(00)94005-X
  21. Hoz, S. J. Org. Chem. 1982, 47, 3545-3547. https://doi.org/10.1021/jo00139a033
  22. Kirby, A. J.; Davies, J. E.; Fox, D. J.; Hodgson, D. R.; Goeta, A. E.; Lima, M. F.; Priebe, J. P.; Santaballa, J. A.; Nome, F. Chem. Commun. 2010, 1302-1304.
  23. Kirby, A. J.; Tondo, D. W.; Medeiros, M.; Souza, B. S.; Priebe, J. P.; Lima, M. F.; Nome, F. J. Am. Chem. Soc. 2009, 131, 2023-2028. https://doi.org/10.1021/ja808746f
  24. Kirby, A. J.; Souza, B. S.; Medeiros, M.; Priebe, J. P.; Manfredi, A. M.; Nome, F. Chem. Commun. 2008, 4428-4429.
  25. Kirby, A. J.; Lima, M. F.; da Silva, D.; Roussev, C. D.; Nome, F. J. Am. Chem. Soc. 2006, 128, 16944-16952. https://doi.org/10.1021/ja066439u
  26. Terrier, F.; Rodriguez-Dafonte, P.; Le Guevel, E.; Moutiers, G. Org. Biomol. Chem. 2006, 4, 4352-4363. https://doi.org/10.1039/b609658c
  27. Terrier, F.; Le Guevel, E.; Chatrousse, A. P.; Moutiers, G.; Buncel, E. Chem. Commun. 2003, 600-601.
  28. Buncel, E.; Cannes, C.; Chatrousse, A-P.; Terrier, F. J. Am. Chem. Soc. 2002, 124, 8766-8767. https://doi.org/10.1021/ja020379k
  29. Fountain, K. R. J. Phys. Org. Chem. 2005, 18, 481-485. https://doi.org/10.1002/poc.897
  30. Fountain, K. R.; Felkerson, C. J.; Driskell, J. D.; Lamp, B. D. J. Org. Chem. 2003, 68, 1810-1814. https://doi.org/10.1021/jo0206263
  31. Fountain, K. R.; Tad-y, D. B.; Paul, T. W.; Golynskiy, M. V. J. Org. Chem. 1999, 64, 6547-6553. https://doi.org/10.1021/jo981902+
  32. Fountain, K. R.; Patel, K. D. J. Org. Chem. 1997, 62, 4795-4797. https://doi.org/10.1021/jo9606012
  33. Fountain, K. R.; Dunkin, T. W.; Patel, K. D. J. Org. Chem. 1997, 62, 2738-2741. https://doi.org/10.1021/jo9620021
  34. Domingos, J. B.; Longhinotti, E.; Brandao, T. A. S.; Santos, L. S.; Eberlin, M. N.; Bunton, C. A.; Nome, F. J. Org. Chem. 2004, 69, 7898-7905. https://doi.org/10.1021/jo048737k
  35. Bunton, C. A.; Nome, F.; Quina, F. H.; Romsted, L. S. Acc. Chem. Res. 1991, 24, 357-364. https://doi.org/10.1021/ar00012a001
  36. Bunton, C. A.; Mhala, M. M.; Moffatt, J. R. J. Phys. Chem. 1989, 93, 854-858. https://doi.org/10.1021/j100339a061
  37. Gregory, M. J.; Bruice, T. C. J. Am. Chem. Soc. 1967, 89, 4400-4405. https://doi.org/10.1021/ja00993a026
  38. Dixon, J. E.; Bruice, T. C. J. Am. Chem. Soc. 1972, 94, 2052-2056. https://doi.org/10.1021/ja00761a043
  39. Dixon, J. E.; Bruice, T. C. J. Am. Chem. Soc. 1971, 93, 6592-6597. https://doi.org/10.1021/ja00753a044
  40. Jencks, W. P. Catalysis in Chemistry and Enzymology; McGraw-Hill: New York, 1969; pp 107-111.
  41. Herschlag, D.; Jencks, W. P. J. Am. Chem. Soc. 1990, 112, 1951-1956. https://doi.org/10.1021/ja00161a047
  42. Jencks, W. P. Chem. Rev. 1985, 85, 511-526. https://doi.org/10.1021/cr00070a001
  43. Bernasconi, C. F.; Leyes, A. E.; Eventova, I.; Rappoport, Z. J. Am. Chem. Soc. 1995, 117, 1703-1711. https://doi.org/10.1021/ja00111a006
  44. Bernasconi, C. F. Adv. Phys. Org. Chem. 1992, 27, 119-238.
  45. Bernasconi, C. F.; Stronach, M. W. J. Org. Chem. 1991, 56, 1993-2001. https://doi.org/10.1021/jo00006a008
  46. Bernasconi, C. F. Acc. Chem. Res. 1987, 20, 301-308. https://doi.org/10.1021/ar00140a006
  47. Bernasconi, C. F.; Murray, C. J. J. Am. Chem. Soc. 1986, 108, 5251-5257. https://doi.org/10.1021/ja00277a032
  48. Ghosh, K. K.; Tiwari, S.; Marek, J.; Kuca, K. Lett. Drug Design & Discov. 2010, 7, 194-199. https://doi.org/10.2174/157018010790596650
  49. Ghosh, K. K.; Tiwari, S.; Marek, J.; Kuca, K. J. Chem. & Engin. Data, 2010, 55, 1153-1157. https://doi.org/10.1021/je9005773
  50. Ghosh, K. K.; Sinha, D.; Satnami, M. L.; Dubey, D. K.; Rodriguez-Dafonte, P.; Mundhara, G. L. Langmuir 2005, 21, 8664-8669. https://doi.org/10.1021/la051223b
  51. Shrivastava, A.; Ghosh, K. K. J. Mol. Liq. 2008, 141, 99-101. https://doi.org/10.1016/j.molliq.2008.03.008
  52. Buncel, E.; Um, I. H. Chem. Commun. 1986, 595.
  53. Um, I. H.; Buncel, E. J. Org. Chem. 2000, 65, 577-582. https://doi.org/10.1021/jo9915776
  54. Um, I. H.; Buncel, E. J. Am. Chem. Soc. 2001, 123, 11111-11112. https://doi.org/10.1021/ja016917v
  55. Um, I. H.; Shin, Y. H.; Han, J. Y.; Buncel, E. Can. J. Chem. 2006, 84, 1550-1556. https://doi.org/10.1139/v06-156
  56. Um, I. H.; Han, J. Y.; Buncel, E. Chem. Eur. J. 2009, 15, 1011-1017. https://doi.org/10.1002/chem.200801534
  57. Um, I. H.; Hong, J. Y.; Buncel, E. Chem. Commun. 2001, 27-28.
  58. Um, I. H.; Im, L. R.; Buncel, E. J. Org. Chem. 2010, 75, 8571-8577. https://doi.org/10.1021/jo101978x
  59. Um, I. H.; Han, H. J.; Ahn, J. A.; Kang, S.; Buncel, E. J. Org. Chem. 2002, 67, 8475-8480. https://doi.org/10.1021/jo026339g
  60. Um, I. H.; Lee, E. J.; Buncel, E. J. Org. Chem. 2001, 66, 4859-4864. https://doi.org/10.1021/jo0156114
  61. Um, I. H.; Park, Y. M.; Buncel, E. Chem. Commun. 2000, 1917-1918.
  62. Hong, H. J.; Lee, J.; Bae, A. R.; Um, I. H. Bull. Korean Chem. Soc. 2013, 34, 2001-2005. https://doi.org/10.5012/bkcs.2013.34.7.2001
  63. Jenks, W. P.; Regenstein, J. In Handbook of Biochemistry, Selected Data for Molecular Biology; Sober, H. A., Ed.; The Chemical Rubber Co.; Cleveland, OH, 1968; p J-216.
  64. Gresser, M. J.; Jenks, W. P. J. Am. Chem. Soc. 1977, 99, 6963-6970. https://doi.org/10.1021/ja00463a032
  65. Gresser, M. J.; Jenks, W. P. J. Am. Chem. Soc. 1977, 99, 6970-6980. https://doi.org/10.1021/ja00463a033
  66. Castro, E. A.; Campodonico, P. R.; Contreras, R.; Fuentealba, P.; Santos, J. G.; Leis, J. R.; Garcia-Rio, L.; Saez, J. A.; Domingo, L. R. Tetrahedron 2006, 62, 2555-2562. https://doi.org/10.1016/j.tet.2005.12.044
  67. Castro, E. A.; Gazitua, M.; Santos, J. G. J. Org. Chem. 2005, 70, 8088-8092. https://doi.org/10.1021/jo051168b
  68. Hoque, M. E. U.; Dey, S.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Org. Chem. 2007, 72, 5493-5499. https://doi.org/10.1021/jo0700934
  69. Oh, H. K.; Oh, J. Y.; Sung, D. D.; Lee, I. J. Org. Chem. 2005, 70, 5624-5629. https://doi.org/10.1021/jo050606b
  70. Lee, H. W.; Guba, A. K.; Kim, C. K.; Lee, I. J. Org. Chem. 2002, 67, 2215-2222. https://doi.org/10.1021/jo0162742
  71. Hoque, M. E. U.; Dey, N. K.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 1797-1802. https://doi.org/10.5012/bkcs.2007.28.10.1797
  72. Um, I. H.; Park, Y. M.; Fujio, M.; Mishima, M.; Tsuno, Y. J. Org. Chem. 2007, 72, 4816-4821. https://doi.org/10.1021/jo0705061
  73. Um, I. H.; Hwang, S. J.; Baek, M. H.; Park, E. J. J. Org. Chem. 2006, 71, 9191-9197. https://doi.org/10.1021/jo061682x
  74. Um, I. H.; Ko, S. H.; Bae, S. K. J. Org. Chem. 2006, 71, 5800-5803. https://doi.org/10.1021/jo0606958
  75. Um, I. H.; Lee, H. W.; Nagano, Y.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2005, 70, 4980-4987. https://doi.org/10.1021/jo050172k
  76. Um, I. H.; Bae, A. R. J. Org. Chem. 2012, 77, 5781-5787. https://doi.org/10.1021/jo300961y
  77. Um, I. H.; Bae, A. R. J. Org. Chem. 2011, 76, 7510-7515. https://doi.org/10.1021/jo201387h
  78. Um, I. H.; Im, L. R.; Kim, E. H.; Shin, J. H. Org. Biomol. Chem. 2010, 8, 3801-3806. https://doi.org/10.1039/c0ob00031k
  79. Um, I. H.; Han, J. Y.; Shin, Y. H. J. Org. Chem. 2009, 74, 3073-3078. https://doi.org/10.1021/jo900219t
  80. Um, I. H.; Hwang, S. J.; Yoon, S. R.; Jeon, S. E.; Bae, S. K. J. Org. Chem. 2008, 73, 7671-7677. https://doi.org/10.1021/jo801539w
  81. Um, I. H.; Kang, J. S.; Shin, Y. H.; Buncel, E. J. Org. Chem. 2013, 78, 490-497. https://doi.org/10.1021/jo302373y
  82. Um, I. H.; Seo, J. Y.; Kang, J. S.; An, J. S. Bull. Chem. Soc. Jpn. 2012, 85, 1007-1013. https://doi.org/10.1246/bcsj.20120104
  83. Um, I. H.; Lee, E. J.; Seok, J. A.; Kim, K. H. J. Org. Chem. 2005, 70, 7530-7536. https://doi.org/10.1021/jo050624t
  84. Tsuno, Y.; Fujio, M. Adv. Phys. Org. Chem. 1999, 32, 267-385. https://doi.org/10.1016/S0065-3160(08)60009-X
  85. Tsuno, Y.; Fujio, M. Chem. Soc. Rev. 1996, 25, 129-139. https://doi.org/10.1039/cs9962500129
  86. Yukawa, Y.; Tsuno, Y. Bull. Chem. Soc. Jpn. 1959, 32, 965-970. https://doi.org/10.1246/bcsj.32.965
  87. Than, S.; Badal, M.; Itoh, S.; Mishima, M. J. Phys. Org. Chem. 2010, 23, 411-417.
  88. Itoh, S.; Badal, M.; Mishima, M. J. Phys. Org. Chem. 2009, 113, 10075-10080. https://doi.org/10.1021/jp904159u
  89. Than, S.; Maeda, H.; Irie, M.; Kikukawa, K.; Mishima, M. Int. J. Mass spectrum. 2007, 263, 205-214.
  90. Maeda, H.; Irie, M.; Than, S.; Kikukawa, K.; Mishima, M. Bull. Chem. Soc. Jpn. 2007, 80, 195-203. https://doi.org/10.1246/bcsj.80.195
  91. Fujio, M.; Alam, M. A.; Umezaki, Y.; Kikukawa, K. Fujiyama, R.; Tsuno, Y. Bull. Chem. Soc. Jpn. 2007, 80, 2378-2383. https://doi.org/10.1246/bcsj.80.2378
  92. Mishima, M.; Maeda, H.; Than, S.; Irie, M.; Kikukawa, K. J. Phys. Org. Chem. 2006, 19, 616-623. https://doi.org/10.1002/poc.1104
  93. Um, I. H.; Chung, E. K.; Lee, S. M. Can. J. Chem. 1998, 76, 729-737.
  94. Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem. 2006, 71, 7715-7720. https://doi.org/10.1021/jo061308x

Cited by

  1. 2 reaction vol.36, pp.11, 2015, https://doi.org/10.1002/jcc.23862
  2. Kinetic Study on Nucleophilic Displacement Reactions of Phenyl Y-Substituted Phenyl Carbonates with 1,8-Diazabicyclo[5.4.0]undec-7-ene: Effects of Amine Nature on Reaction Mechanism vol.37, pp.1, 2015, https://doi.org/10.1002/bkcs.10627
  3. Kinetic Study on Nucleophilic Substitution Reactions of Aryl Diphenylphosphinates with Butane-2,3-dione Monoximate and Aryloxide Anions: Reaction Mechanism and Origin of the α-Effect vol.37, pp.8, 2016, https://doi.org/10.1002/bkcs.10836
  4. Tf2O/DMSO-Promoted P-O and P-S Bond Formation: A Scalable Synthesis of Multifarious Organophosphinates and Thiophosphates vol.23, pp.5, 2021, https://doi.org/10.1021/acs.orglett.0c04127