DOI QR코드

DOI QR Code

A New Quinoline-Based Acylhydrazone for Highly Selective Fluorescence Recognition of Cu(II) and Sulfide in Aqueous Solution

  • Tang, Lijun (Department of Chemistry, Liaoning Provincial Key Laboratory for the Synthesis and Application of Functional Compounds, Bohai University) ;
  • Zhou, Pei (Department of Chemistry, Liaoning Provincial Key Laboratory for the Synthesis and Application of Functional Compounds, Bohai University) ;
  • Qi, Zhikai (School of Chemistry & Material Science, Shanxi Normal University) ;
  • Huang, Zhenlong (Department of Chemistry, Liaoning Provincial Key Laboratory for the Synthesis and Application of Functional Compounds, Bohai University) ;
  • Zhao, Jia (Department of Chemistry, Liaoning Provincial Key Laboratory for the Synthesis and Application of Functional Compounds, Bohai University) ;
  • Cai, Mingjun (Department of Chemistry, Liaoning Provincial Key Laboratory for the Synthesis and Application of Functional Compounds, Bohai University)
  • Received : 2013.03.11
  • Accepted : 2013.05.01
  • Published : 2013.08.20

Abstract

A new quinoline-based acylhydrazone (1) has been synthesized and applied as a fluorescent probe. Probe 1 exhibits high selectivity and sensitivity to $Cu^{2+}$ with fluorescence "ON-OFF" behavior in HEPES buffered (1‰ DMSO, HEPES 20 mM, pH = 7.4) solution. The on-site generated 1-$Cu^{2+}$ complex displays excellent selectivity to sulfide ions with fluorescence "OFF-ON" performance through copper displacement approach.

Keywords

References

  1. Uauy, R.; Olivares, M.; Gonzalez, M. Am. J. Cli. Nutr. 1998, 67, 952S-959S.
  2. Lou, X.; Qiang, L.; Qin, J.; Li, Z. ACS Appl. Mater. Interfaces 2009, 1, 2529-2535. https://doi.org/10.1021/am900467b
  3. Barnham, K. J.; Masters, C. L.; Bush, A. I. Nat. Rev. Drug Discov. 2004, 3, 205-214. https://doi.org/10.1038/nrd1330
  4. Quang, D. T.; Kim, J. S. Chem. Rev. 2010, 110, 6280-6301. https://doi.org/10.1021/cr100154p
  5. Chen, X.; Pradhan, T.; Wang, F.; Kim, J. S.; Yoon, J. Chem. Rev. 2012, 112, 1910-1956. https://doi.org/10.1021/cr200201z
  6. Tang, L.; Cai, M. Sens. Actuators B 2012, 173, 862-867. https://doi.org/10.1016/j.snb.2012.07.112
  7. Shi, W.-J.; Liu, J.-Y.; Ng, D. K. P. Chem.- Asian J. 2012, 7, 196-200. https://doi.org/10.1002/asia.201100598
  8. Kumar, M.; Kumar, N.; Bhalla, V.; Sharma, P. R.; Kaur, T. Org. Lett. 2012, 14, 406-409. https://doi.org/10.1021/ol203186b
  9. Guo, Y.; Wang, Z.; Qu, W.; Shao, H.; Jiang, X. Biosens. Bioelectron. 2011, 26, 4064-4069. https://doi.org/10.1016/j.bios.2011.03.033
  10. Lou, X.; Ou, D.; Li, Q.; Li, Z. Chem. Commun. 2012, 48, 8462-8477. https://doi.org/10.1039/c2cc33158f
  11. Binh, T.; Nguyen, E. V. A. Chem. Rev. 2006, 250, 3118-3127.
  12. Kim, M. J.; Swamy, K. M. K.; Lee, K. M.; Jagdale, A. R.; Kim, Y.; Kim, S.-J.; Yoo, K. H.; Yoon, J. Chem. Commun. 2009, 45, 7215-7217.
  13. Huang, X.; Guo, Z.; Zhu, W.; Xie, Y.; Tian, H. Chem. Commun. 2008, 44, 5143-5145.
  14. Hydrogen Sulfide; World Health Organization: Geneva, 1981 (Environmental Health Criteria, No. 19).
  15. Cao, X.; Lin, W.; He, L. Org. Lett. 2011, 13, 4716-4719. https://doi.org/10.1021/ol201932c
  16. Patwardhan, S. A.; Abhyankar, S. M. Colourage 1988, 35, 15-18.
  17. Lawrence, N. S.; Davis, J.; Compton, R. G. Talanta 2000, 52, 771-784. https://doi.org/10.1016/S0039-9140(00)00421-5
  18. Pawlak, Z.; Pawlak, A. S. Talanta 1999, 48, 347-353. https://doi.org/10.1016/S0039-9140(98)00253-7
  19. Vallejo, B.; Richter, P.; Toral, I.; Tapia, C.; Luque de Castro, M. D. Anal. Chim. Acta 2001, 436, 301-307. https://doi.org/10.1016/S0003-2670(01)00949-7
  20. Puacz, W.; Szahun, W.; Linke, K. Analyst 1995, 120, 939-941. https://doi.org/10.1039/an9952000939
  21. Divjak, B.; Goessler, W. J. Chromatogr., A 1999, 844, 161-169. https://doi.org/10.1016/S0021-9673(99)00409-4
  22. Huang, R.; Zheng, X.; Qu, Y. Anal. Chim. Acta 2007, 582, 267-274. https://doi.org/10.1016/j.aca.2006.09.035
  23. Maya, F.; Estela, J. M.; Cerda, V. Anal. Chim. Acta 2007, 601, 87-94. https://doi.org/10.1016/j.aca.2007.08.030
  24. Jimenez, D.; Martinez-Manez, R.; Sancenon, F.; Ros-Lis, J. V.; Benito, A.; Soto, J. J. Am. Chem. Soc. 2003, 125, 9000-9001. https://doi.org/10.1021/ja0347336
  25. Yang, X.-F.; Wang, L.; Xu, H.; Zhao, M. Anal. Chim. Acta 2009, 631, 91-95. https://doi.org/10.1016/j.aca.2008.10.037
  26. Choi, M. G.; Cha, S.; Lee, H.; Jeon, H. L.; Chang, S.-K. Chem. Commun. 2009, 45, 7390-7392.
  27. Lou, X.; Mu, H.; Gong, R.; Fu, E.; Qin, J.; Li, Z. Analyst 2011, 136, 684-687. https://doi.org/10.1039/c0an00742k
  28. Zhang, L.; Lou, X.; Yu, Y.; Qin, J.; Li, Z. Macromolecules 2011, 44, 5186-5193. https://doi.org/10.1021/ma200777e
  29. Hou, F.; Huang, L.; Xi, P.; Cheng, J.; Zhao, X.; Xie, G.; Shi, Y.; Cheng, F.; Yao, X.; Bai, D. Inorg. Chem. 2012, 51, 2454-2460. https://doi.org/10.1021/ic2024082
  30. Liu, J.; Chen, J.; Fang, Z.; Zeng, L. Analyst 2012, 137, 5502-5505. https://doi.org/10.1039/c2an35885a
  31. Wang, M.-Q.; Li, K.; Hou, J.-T.; Wu, M.-Y.; Huang, Z.; Yu, X.-Q. J. Org. Chem. 2012, 77, 8350-8354. https://doi.org/10.1021/jo301196m
  32. Qian, Y.; Karpus, J.; Kabil, O.; Zhang, S.-Y.; Zhu, H.-L.; Banerjee, R.; Zhao, J.; He, C. Nat. Commun. 2011, 2, 495. https://doi.org/10.1038/ncomms1506
  33. Martinez-Manez, R.; Sancenon, F. Chem. Rev. 2003, 103, 4419-4476. https://doi.org/10.1021/cr010421e
  34. Edward J. O'Neil, B. D. S. Coord. Chem. Rev. 2006, 250, 3068-3080. https://doi.org/10.1016/j.ccr.2006.04.006
  35. Wiskur, S. L.; Ait-Haddou, H.; Lavigne, J. J.; Anslyn, E. V. Acc. Chem. Res. 2001, 34, 963-972. https://doi.org/10.1021/ar9600796
  36. Wright, A. T.; Anslyn, E. V. Chem. Soc. Rev. 2006, 35, 14-28. https://doi.org/10.1039/b505518k
  37. Zhang, R.; Yu, X.; Yin, Y.; Ye, Z.; Wang, G.; Yuan, J. Anal. Chim. Acta 2011, 691, 83-88. https://doi.org/10.1016/j.aca.2011.02.051
  38. Hou, F.; Cheng, J.; Xi, P.; Chen, F.; Huang, L.; Xie, G.; Shi, Y.; Liu, H.; Bai, D.; Zeng, Z. Dalton Trans. 2012, 41, 5799-5804. https://doi.org/10.1039/c2dt12462a
  39. Zhang, D.; Jin, W. Spectrochimica Acta Part A: Spectrochim. Acta, Part A 2012, 90, 35-39. https://doi.org/10.1016/j.saa.2012.01.013
  40. Gu, X.; Liu, C.; Zhu, Y.-C.; Zhu, Y.-Z. Tetrahedron Lett. 2011, 52, 5000-5003. https://doi.org/10.1016/j.tetlet.2011.07.004
  41. Xue, G.-P.; Savage, P. B.; Krakowiak, K. E.; Izatt, R. M.; Bradshaw, J. S. J. Heterocycl. Chem. 2001, 38, 1453-1457. https://doi.org/10.1002/jhet.5570380631
  42. Swamy, K. M. K.; Kim, H. N.; Soh, J. H.; Kim, Y.; Kim, S.-J.; Yoon, J. Chem. Commun. 2009, 45, 1234-1236.
  43. Benesi, H. A.; Hildebrand, J. H. J. Am. Chem. Soc. 1949, 71, 2703-2707. https://doi.org/10.1021/ja01176a030
  44. Lin, W.; Yuan, L.; Cao, Z.; Feng, Y.; Long, L. Chem.-Eur J. 2009, 15, 5096-5103. https://doi.org/10.1002/chem.200802751
  45. Zhu, Y. F.; Fan, D. H.; Shen, W. Z. J. Phys. Chem. C 2008, 112, 10402-10406. https://doi.org/10.1021/jp802545e
  46. Wang, H.; Xue, L.; Jiang, H. Org. Lett. 2011, 13, 3844-3847. https://doi.org/10.1021/ol2013632

Cited by

  1. Syntheses, structures, and photophysical properties of ZnII and CdII metal complexes based on benzoylhydrazones vol.63, pp.6, 2014, https://doi.org/10.1007/s11172-014-0601-z
  2. . A comprehensive review from the years 2013–15 vol.9, pp.4, 2017, https://doi.org/10.1039/C6AY02416E
  3. Oxidation and Deprotonation of a Ruthenium(II) Complex with Quinoline-2-carbaldehyde (Pyridine-2-carbonyl)hydrazone and Formation of Hydrazonato-Bridged Heterodimetallic Complexes vol.88, pp.3, 2015, https://doi.org/10.1246/bcsj.20140381
  4. ChemInform Abstract: A New Quinoline‐Based Acylhydrazone for Highly Selective Fluorescence Recognition of Cu(II) and Sulfide in Aqueous Solution. vol.44, pp.52, 2013, https://doi.org/10.1002/chin.201352156
  5. 6-Polyamino-substituted quinolines: synthesis and multiple metal (CuII, HgIIand ZnII) monitoring in aqueous media vol.17, pp.17, 2013, https://doi.org/10.1039/c9ob00259f