• 제목/요약/키워드: Transition prediction

검색결과 244건 처리시간 0.021초

MR 영상을 이용한 뇌경색 시기판단과 전이방향에 관한 연구 (A Study on Prediction of the brain infarction period and transition direction using MR image)

  • 하광;정필수;박병래;예수영;김학진;전계록
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1998년도 추계학술대회
    • /
    • pp.267-268
    • /
    • 1998
  • In this paper, we analysis 3 types of magnetic resonance image for determining whether brain infarction period is hyperacute or not. If its peirod is hyperacute, we can predict brain infarction transition direction. We use EPI(Echo Planar Image) for prediction of brain infarction transition direction. EPI is a good image for detecting brain infarction because EPI can detect the moving of water in brain which play an important role in deciding method of medical treatment. We utilize characteristics of 3 type of MRI and their relation in brain infarction patient for determining brain infarction period. By this method, we obtain each period characteristics and predict brain infarction transition direction more accurately comparing past method.

  • PDF

익형의 층류박리를 동반한 천이 유동 해석 (COMPUTATION OF TRANSITION FLOW WITH LAMINAR SEPARATION BUBBLE OVER AN AIRFOIL)

  • 전상언;박수형;김상호;변영환;이재우;정경진
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.60-64
    • /
    • 2009
  • Laminar separation bubble and transitional flow over an airfoil are investigated at a moderate range of Reynolds numbers. In this research, a Reynolds-Averaged Navier-Stokes code is coupled with an empirical transition model that can predict transition onset points and the length of transition region. Without solving the boundary layer equations, approximated e-N method is directly applied to the RANS code and iteratively solved together. The computational results are compared with the experimental data for NACA0012 airfoil. Results of transition onset point and length are compared well with experimental and XFOIL prediction. In high angle of attack the present RANS results show better agreement than XFOIL results using the boundary layer equations.

  • PDF

NACA0012 천이 유동의 저속 공력 특성 해석 (LOW-SPEED AERODYNAMIC CHARACTERISTIC OF TRANSITION FLOW OVER THE NACA0012)

  • 전상언;박수형;김상호;변영환;정경진;강인모
    • 한국전산유체공학회지
    • /
    • 제15권3호
    • /
    • pp.1-8
    • /
    • 2010
  • Laminar separation bubble and transitional flow over the NACA0012 are investigated at a moderate range of Reynolds numbers. A Reynolds-Averaged Navier-Stokes code is coupled with an empirical transition model that can predict transition onset points and the length of transition region. Without solving the boundary layer equations, approximated e-N method is directly applied to the RANS code and iteratively solved together. The computational results are compared with the experimental data for the NACA0012 airfoil. Results of transition onset point and the length are compared well with experimental data and Xfoil prediction. The present RANS results show at high angles of attack better agreement with experimental data than Xfoil results using the boundary layer equations.

CFD에 의한 2D 에어포일 공력특성 및 3D 풍력터빈 성능예측 (Predicting the Aerodynamic Characteristics of 2D Airfoil and the Performance of 3D Wind Turbine using a CFD Code)

  • 김범석;김만응;이영호
    • 대한기계학회논문집B
    • /
    • 제32권7호
    • /
    • pp.549-557
    • /
    • 2008
  • Despite of the laminar-turbulent transition region co-exist with fully turbulence region around the leading edge of an airfoil, still lots of researchers apply to fully turbulence models to predict aerodynamic characteristics. It is well known that fully turbulent model such as standard k-model couldn't predict the complex stall and the separation behavior on an airfoil accurately, it usually leads to over prediction of the aerodynamic characteristics such as lift and drag forces. So, we apply correlation based transition model to predict aerodynamic performance of the NREL (National Renewable Energy Laboratory) Phase IV wind turbine. And also, compare the computed results from transition model with experimental measurement and fully turbulence results. Results are presented for a range of wind speed, for a NREL Phase IV wind turbine rotor. Low speed shaft torque, power, root bending moment, aerodynamic coefficients of 2D airfoil and several flow field figures results included in this study. As a result, the low speed shaft torque predicted by transitional turbulence model is very good agree with the experimental measurement in whole operating conditions but fully turbulent model(${\kappa}-\;{\varepsilon}$) over predict the shaft torque after 7m/s. Root bending moment is also good agreement between the prediction and experiments for most of the operating conditions, especially with the transition model.

Effects of Inlet Turbulence Conditions and Near-wall Treatment Methods on Heat Transfer Prediction over Gas Turbine Vanes

  • Bak, Jeong-Gyu;Cho, Jinsoo;Lee, Seawook;Kang, Young Seok
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권1호
    • /
    • pp.8-19
    • /
    • 2016
  • This paper investigates the effects of inlet turbulence conditions and near-wall treatment methods on the heat transfer prediction of gas turbine vanes within the range of engine relevant turbulence conditions. The two near-wall treatment methods, the wall-function and low-Reynolds number method, were combined with the SST and ${\omega}RSM$ turbulence model. Additionally, the RNG $k-{\varepsilon}$, SSG RSM, and $SST_+{\gamma}-Re_{\theta}$ transition model were adopted for the purpose of comparison. All computations were conducted using a commercial CFD code, CFX, considering a three-dimensional, steady, compressible flow. The conjugate heat transfer method was applied to all simulation cases with internally cooled NASA turbine vanes. The CFD results at mid-span were compared with the measured data under different inlet turbulence conditions. In the SST solutions, on the pressure side, both the wall-function and low-Reynolds number method exhibited a reasonable agreement with the measured data. On the suction side, however, both wall-function and low-Reynolds number method failed to predict the variations of heat transfer coefficient and temperature caused by boundary layer flow transition. In the ${\omega}RSM$ results, the wall-function showed reasonable predictions for both the heat transfer coefficient and temperature variations including flow transition onset on suction side, but, low-Reynolds methods did not properly capture the variation of the heat transfer coefficient. The $SST_+{\gamma}-Re_{\theta}$ transition model showed variation of the heat transfer coefficient on the transition regions, but did not capture the proper transition onset location, and was found to be much more sensitive to the inlet turbulence length scale. Overall, the Reynolds stress model and wall function configuration showed the reasonable predictions in presented cases.

압력구배가 변하는 표면 위의 Bypass 천이 유동의 예측 (Prediction of Bypass Transition Flow on Surface with Changing Pressure Gradient)

  • 백성구;정명균;임효재
    • 대한기계학회논문집B
    • /
    • 제26권6호
    • /
    • pp.823-832
    • /
    • 2002
  • A modified $textsc{k}$-$\varepsilon$model is proposed for calculation of transitional boundary-layer flows with changing pressure gradient. In order to develop the model for this problem, the flow is divided into three regions; pre-transition region, transition region and fully turbulent region. The effect of pressure gradient is taken into account in stream-wise intermittency factor, which bridges the eddy-viscosity models in the pre-transition region and the fully turbulent region. From intermittency data in various flows, Narashima's intermittency function, F(${\gamma}$), has been found to be proportional to $\chi$$^{n}$ according to the extent of pressure gradient. Three empirical correlations of intermittency factor being analyzed, the best one was chosen to calculate three benchmark cases of bypass transition flows with different free-stream turbulence intensity under arbitrary pressure gradient. It was found that the variations of skin friction and shape factor as well as the profiles of mean velocity in the transition region were very satisfactorily predicted.

고난류강도 자유유동에서 평판 경계층 천이의 예측을 위한 난류 모형 개발 (Development of k-$\epsilon$ model for prediction of transition in flat plate under free stream with high intensity)

  • 백성구;임효재;정명균
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.337-344
    • /
    • 2000
  • A modified k-$\epsilon$ model is proposed for calculation of transitional boundary layer flows. In order to develop the eddy viscosity model for the problem, the flow is divided into three regions; namely, pre-transition region, transition region and fully turbulent region. The pre-transition eddy-viscosity is formulated by extending the mixing Length concept. In the transition region, the eddy-viscosity model employs two length scales, i.e., pre-transition length scale and turbulent length scale pertaining to the regions upstream and the downstream, respectively, and a university model of stream-wise intermittency variation is used as a function bridging the pre-transition region and the fully turbulent region. The proposed model is applied to calculate three benchmark cases of the transitional boundary layer flows with different free-stream turbulent intensity ( $1\%{\~}6\%$ ) under zero-pressure gradient. It was found that the profiles of mom velocity and turbulent intensity, local maximum of velocity fluctuations, their locations as well as the stream-wise variation of integral properties such as skin friction, shape factor and maximum velocity fluctuations are very satisfactorily Predicted throughout the flow regions.

  • PDF

단일연소관 이중추력 로켓모터의 내탄도성능 분석법 연구 (Study on Internal Ballistic Performance Analysis for Single-chamber Dual-thrust Rocket Motors)

  • 권혁민
    • 한국추진공학회지
    • /
    • 제24권4호
    • /
    • pp.1-11
    • /
    • 2020
  • 본 연구에서는 추진제 연소면적을 조절하여 이중추력 프로파일을 구현하는 단일연소관 이중추력 로켓모터의 내탄도성능 분석 방법을 제시한다. 천이 구간에서의 연소속도 보정계수 및 비추력의 점진적 변화를 고려하며 성능 예측에 필요한 변수를 획득할 수 있는 분석법을 제시하고, 해당 분석법을 적용한 결과와 천이 구간 내 변화를 고려하지 않는, 기존 연구의 분석법을 적용한 결과를 비교함으로써 새로 제시하는 분석법에서 개선된 부분을 확인한다. 추진제 초기 온도 또는 배치 조건이 다른 네 가지의 시험 조건에 대하여 제시하는 분석법을 이용해 내탄도 변수를 획득하고, 이를 이용하여 각 시험 조건별로 성능 예측을 수행한다. 해당 예측 결과는 실제 연소시험 결과와 잘 일치하며, 따라서 본 연구의 분석법을 기반으로 설계 형상이 동일한 이중추력 모터의 성능 예측이 가능함을 확인할 수 있다.

천이 전달 방정식을 이용한 진동하는 익형의 동적 실속의 해석 (ANALYSIS ON THE DYNAMIC STALL OVER AN OSCILLATING AIRFOIL USING TRANSITION TRANSPORT EQUATIONS)

  • 전상언;사정환;박수형;변영환
    • 한국전산유체공학회지
    • /
    • 제19권1호
    • /
    • pp.80-86
    • /
    • 2014
  • Numerical investigation on the dynamic stall over an oscillating airfoil is presented. A Reynolds-Averaged Navier-Stokes (RANS) equations are coupled with transition transport equations for the natural transition. Computational results considering the turbulent transition are compared with the fully turbulent computations and the experimental data. Results with transition prediction show closer correlation with the experimental data than those with the fully turbulent assumption, especially in the reattachment region.

Retention Behavior of Transition Metal ions with Some Complexing Agents on Cation Exchanger

  • Park, Yang-Soon;Joe, Kih-Soo;Lee, Gae-Ho;Han, Sun-Ho;Eom, Tae-Yoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제14권6호
    • /
    • pp.692-696
    • /
    • 1993
  • Prediction of retention times in transition metal-mandelate and transition metal-tartrate complex systems were studied on the cation exchanger. Plots of k' vs [mandelate] and k' vs [tartrate] were obtained under the condition of a constant competing cation concentration. The equation to predict the retention time of transition metal ion was derived from the ion exchange equilibria. Individual capacity factors (${k_1}',\;{k_2}'$) and stability constants ($K_1,\;K_2$) of the complexes were calculated from the non-linear least square method. Good resolution of the transition metals was predicted by the stepwise equation in the gradient method. The values of retention times from the calculation and the experiment agreed well each other.