• Title/Summary/Keyword: Transition model

Search Result 1,773, Processing Time 0.03 seconds

A Study on Improvement γ-Reθt Model for Hypersonic Boundary Layer Analysis (극 초음속 경계층 해석을 위한 γ-Reθt모델 개선 연구)

  • Kang, Sunoh;Oh, Sejong;Park, Donghun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.5
    • /
    • pp.323-334
    • /
    • 2020
  • Since boundary layer transition has a significant impact on the aero-thermodynamic performance of hypersonic flight vehicles, capability of accurate prediction of transition location is essential for design and performance analysis. In this study, γ-Reθt model is improved to predict transition of hypersonic boundary layers and validated. A coefficient in the production term of the intermittency transport equation that affects the transition onset location is constructed and applied as a function of Mach number, wall temperature, and freestream stagnation temperature based on the similarity numerical solution of compressible boundary layer. To take into account a Mach number dependency of transition onset momentum thickness Reynolds number and transition length, additional correlation equations are determined as function of Mach number and applied to Reθc and Flength correlations of the baseline model. The suggested model is implemented to a commercial CFD code in consideration of practical use. Analysis of hypersonic flat plate and circular cone boundary layers is carried out by using the model for validation purpose. An improvement of prediction capability with respect to variation of Mach number and unit Reynolds number is identified from the comparison with experimental data.

Strain Characteristics of Reinforcing materials in the transition zone of slopes (사면의 변이영역에서 보강재의 변형률 특성)

  • 김경태;장대수;장기태;한희수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.119-127
    • /
    • 2003
  • For the calculation of internal stability, the hypothesis in conventional design is on the basis of two distinct zones, which are‘active zone’and‘passive zone’. This means that there is an abrupt discontinuous transition from active to passive states across a potential failure line. The existence of a discontinuity of this nature appears physically unreasonable, especially from kinematic considerations. A series of pull-out model tests was undertaken from a wall being rotated about the toe to find the strain distribution mobilized from near the wall face into the deep, stable zone through the centre plane. With this finding of transition zone, the objective of study is aiming at identifying the likely effect of this zone in designing method by comparing with the prevailing design method.

  • PDF

CHAIN DEPENDENCE AND STATIONARITY TEST FOR TRANSITION PROBABILITIES OF MARKOV CHAIN UNDER LOGISTIC REGRESSION MODEL

  • Sinha Narayan Chandra;Islam M. Ataharul;Ahmed Kazi Saleh
    • Journal of the Korean Statistical Society
    • /
    • v.35 no.4
    • /
    • pp.355-376
    • /
    • 2006
  • To identify whether the sequence of observations follows a chain dependent process and whether the chain dependent or repeated observations follow stationary process or not, alternative procedures are suggested in this paper. These test procedures are formulated on the basis of logistic regression model under the likelihood ratio test criterion and applied to the daily rainfall occurrence data of Bangladesh for selected stations. These test procedures indicate that the daily rainfall occurrences follow a chain dependent process, and the different types of transition probabilities and overall transition probabilities of Markov chain for the occurrences of rainfall follow a stationary process in the Mymensingh and Rajshahi areas, and non-stationary process in the Chittagong, Faridpur and Satkhira areas.

Prediction of the Diffusion Controlled Boundary Layer Transition with an Adaptive Grid (적응격자계를 이용한 경계층의 확산제어천이 예측)

  • Cho J. R.
    • Journal of computational fluids engineering
    • /
    • v.6 no.4
    • /
    • pp.15-25
    • /
    • 2001
  • Numerical prediction of the diffusion controlled transition in a turbine gas pass is important because it can change the local heat transfer rate over a turbine blade as much as three times. In this study, the gas flow over turbine blade is simplified to the flat plate boundary layer, and an adaptive grid scheme redistributing grid points within the computation domain is proposed with a great emphasis on the construction of the grid control function. The function is sensitized to the second invariant of the mean strain tensor, its spatial gradient, and the interaction of pressure gradient and flow deformation. The transition process is assumed to be described with a κ-ε turbulence model. An elliptic solver is employed to integrate governing equations. Numerical results show that the proposed adaptive grid scheme is very effective in obtaining grid independent numerical solution with a very low grid number. It is expected that present scheme is helpful in predicting actual flow within a turbine to improve computation efficiency.

  • PDF

Fertilization and the oocyte-to-embryo transition in C. elegans

  • Marcello, Matthew R.;Singson, Andrew
    • BMB Reports
    • /
    • v.43 no.6
    • /
    • pp.389-399
    • /
    • 2010
  • Fertilization is a complex process comprised of numerous steps. During fertilization, two highly specialized and differentiated cells (sperm and egg) fuse and subsequently trigger the development of an embryo from a quiescent, arrested oocyte. Molecular interactions between the sperm and egg are necessary for regulating the developmental potential of an oocyte, and precise coordination and regulation of gene expression and protein function are critical for proper embryonic development. The nematode Caenorhabditis elegans has emerged as a valuable model system for identifying genes involved in fertilization and the oocyte-to-embryo transition as well as for understanding the molecular mechanisms that govern these processes. In this review, we will address current knowledge of the molecular underpinnings of gamete interactions during fertilization and the oocyte-to-embryo transition in C. elegans. We will also compare our knowledge of these processes in C. elegans to what is known about similar processes in mammalian, specifically mouse, model systems.

TRANSITIONAL FLOW ANALYSIS OVER DOUBLE COMPRESSION RAMP WITH NOSE BLUNTNESS IN SUPERSONIC FLOW (초음속 이중 압축 램프의 앞전 곡률에 따른 천이 유동 해석)

  • Shin, Ho Cheol;Sa, Jeong Hwan;Park, Soo Hyung;Byun, Yung Hwan
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.36-43
    • /
    • 2015
  • Accurate prediction of supersonic transition is required for the heat transfer estimation over supersonic double compression ramp flows. Correlation-based transition models were assessed for a supersonic double ramp problem. Numerical results were compared with experimental data from RWTH Aachen University. A parametric study on the nose bluntness was performed using a selected transition model. As the nose bluntness increases, the boundary layer thickness is increased and the triple point of shock interactions moves downstream. The peak magnitude of the heat transfer is consequently decreased with the nose bluntness.

Fault Tree Analysis based on State-Transition Model (상태 전이 모델 기반 결함 트리 분석)

  • Chung, In-Sang
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.10
    • /
    • pp.49-58
    • /
    • 2011
  • Fault Tree Analysis(FTA) builds fault trees to perform safety analysis of systems. However, building fault trees depends on domain knowledge and expertize on target systems and consumes lots of time and efforts. In this paper, we propose a technique that builds fault trees systematically based on state-transition models which are software design artifacts. For the end, this paper identifies conditions that should be satisfied to guarantee safety of state-transition models and develop templates for fault tree construction. This paper also describes the results of appling the proposed method to railway crossing control system.

Bayesian Analysis of Binary Non-homogeneous Markov Chain with Two Different Time Dependent Structures

  • Sung, Min-Je
    • Management Science and Financial Engineering
    • /
    • v.12 no.2
    • /
    • pp.19-35
    • /
    • 2006
  • We use the hierarchical Bayesian approach to describe the transition probabilities of a binary nonhomogeneous Markov chain. The Markov chain is used for describing the transition behavior of emotionally disturbed children in a treatment program. The effects of covariates on transition probabilities are assessed using a logit link function. To describe the time evolution of transition probabilities, we consider two modeling strategies. The first strategy is based on the concept of exchangeabiligy, whereas the second one is based on a first order Markov property. The deviance information criterion (DIC) measure is used to compare models with two different time dependent structures. The inferences are made using the Markov chain Monte Carlo technique. The developed methodology is applied to some real data.

Chain Dimensions and Intrinsic Viscosities of Polypeptides in the Helix-Coil Transition Region

  • Jong-Ryul Kim;Tai-Kyue Ree
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.1
    • /
    • pp.36-41
    • /
    • 1983
  • An equation is derived which correlates the unperturbed dimensions $_0$ of polypeptides with the helical contents in the helix-coil transition region by using a simple model of a polypeptide chain. The model is a chain of connected balls which represent the repeating units, -CO-NH-CHR-, based on the fact that the repeating unit has a plane structure. The changing trend of the expansion factor ${\alpha}_{\eta}$ in the transition region is connected with the helical content $f_H$. The intrinsic viscosities [${\eta}$] of polypeptides are calculated from the unperturbed dimensions and the ${\alpha}_{\eta}$ factors. The above calculated results concerning $_0$ and [${\eta}$] are compared with other authors' theoretical and experimental results. From the comparison, we concluded that our theory explains better the chain dimensional behavior of polypeptides in the helix-coil transition region than others.

DYNAMIC STALL PREDICTION WITH TRANSITION OVER AN OSCILLATING AIRFOIL (천이를 고려한 진동하는 익형의 동적 실속 예측)

  • Jeon, Sang-Eon;Park, Soo-Hyung;Kim, Chang-Joo;Chung, Ki-Hoon;Jung, Kyung-Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.358-361
    • /
    • 2010
  • A Reynolds-Averaged Navier-Stokes (RANS) code with transition prediction model is developed and the computational results on an oscillating airfoil are compared with the experimental data for OA209 airfoil. An approximated eN method that can predict transition onset points and the length of transition region is directly applied to the RANS code. The hysteresis loop in dynamic stall is compared for the computational results using transition prediction and fully turbulent models with the experimental data. Results with transition prediction show more correlation with the experimental data than the fully turbulent computation.

  • PDF